Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NMR Biomed ; 32(3): e4055, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30637831

RESUMO

Time constraints placed on magnetic resonance imaging often restrict the application of advanced diffusion MRI (dMRI) protocols in clinical practice and in high throughput research studies. Therefore, acquisition strategies for accelerated dMRI have been investigated to allow for the collection of versatile and high quality imaging data, even if stringent scan time limits are imposed. Diffusion spectrum imaging (DSI), an advanced acquisition strategy that allows for a high resolution of intra-voxel microstructure, can be sufficiently accelerated by means of compressed sensing (CS) theory. CS theory describes a framework for the efficient collection of fewer samples of a data set than conventionally required followed by robust reconstruction to recover the full data set from sparse measurements. For an accurate recovery of DSI data, a suitable acquisition scheme for sparse q-space sampling and the sensing and sparsifying bases for CS reconstruction need to be selected. In this work we explore three different types of q-space undersampling schemes and two frameworks for CS reconstruction based on either Fourier or SHORE basis functions. After CS recovery, diffusion and microstructural parameters and orientational information are estimated from the reconstructed data by means of state-of-the-art processing techniques for dMRI analysis. By means of simulation, diffusion phantom and in vivo DSI data, an isotropic distribution of q-space samples was found to be optimal for sparse DSI. The CS reconstruction results indicate superior performance of Fourier-based CS-DSI compared to the SHORE-based approach. Based on these findings we outline an experimental design for accelerated DSI and robust CS reconstruction of the sparse measurements that is suitable for the application within time-limited studies.


Assuntos
Algoritmos , Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador , Aceleração , Adulto , Simulação por Computador , Feminino , Humanos , Imagens de Fantasmas
2.
Front Neurosci ; 12: 650, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30319336

RESUMO

Mapping non-invasively the complex microstructural architecture of the living human brain, diffusion magnetic resonance imaging (dMRI) is one of the core imaging modalities in current population studies. For the application in longitudinal population imaging, the dMRI protocol should deliver reliable data with maximum potential for future analysis. With the recent introduction of novel MRI hardware, advanced dMRI acquisition strategies can be applied within reasonable scan time. In this work we conducted a pilot study based on the requirements for high resolution dMRI in a long-term and high throughput population study. The key question was: can diffusion spectrum imaging accelerated by compressed sensing theory (CS-DSI) be used as an advanced imaging protocol for microstructure dMRI in a long-term population imaging study? As a minimum requirement we expected a high level of agreement of several diffusion metrics derived from both CS-DSI and a 3-shell high angular resolution diffusion imaging (HARDI) acquisition, an established imaging strategy used in other population studies. A wide spectrum of state-of-the-art diffusion processing and analysis techniques was applied to the pilot study data including quantitative diffusion and microstructural parameter mapping, fiber orientation estimation and white matter fiber tracking. When considering diffusion weighted images up to the same maximum diffusion weighting for both protocols, group analysis across 20 subjects indicates that CS-DSI performs comparable to 3-shell HARDI in the estimation of diffusion and microstructural parameters. Further, both protocols provide similar results in the estimation of fiber orientations and for local fiber tracking. CS-DSI provides high radial resolution while maintaining high angular resolution and it is well-suited for analysis strategies that require high b-value acquisitions, such as CHARMED modeling and biomarkers from the diffusion propagator.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...