Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Ecol ; 34(4): 558-74, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18317843

RESUMO

Plants defend themselves against herbivores and pathogens with a suite of morphological, phenological, biochemical, and biotic defenses, each of which is presumably costly. The best studied are allocation costs that involve trade-offs in investment of resources to defense versus other plant functions. Decreases in growth or reproductive effort are the costs most often associated with antiherbivore defenses, but trade-offs among different defenses may also occur within a single plant species. We examined trade-offs among defenses in closely related tropical rain forest shrubs (Piper cenocladum, P. imperiale, and P. melanocladum) that possess different combinations of three types of defense: ant mutualists, secondary compounds, and leaf toughness. We also examined the effectiveness of different defenses and suites of defenses against the most abundant generalist and specialist Piper herbivores. For all species examined, leaf toughness was the most effective defense, with the toughest species, P. melanocladum, receiving the lowest incidence of total herbivory, and the least tough species, P. imperiale, receiving the highest incidence. Although variation in toughness within each species was substantial, there were no intraspecific relationships between toughness and herbivory. In other Piper studies, chemical and biotic defenses had strong intraspecific negative correlations with herbivory. A wide variety of defensive mechanisms was quantified in the three Piper species studied, ranging from low concentrations of chemical defenses in P. imperiale to a complex suite of defenses in P. cenocladum that includes ant mutualists, secondary metabolites, and moderate toughness. Ecological costs were evident for the array of defensive mechanisms within these Piper species, and the differences in defensive strategies among species may represent evolutionary trade-offs between costly defenses.


Assuntos
Comportamento Alimentar , Piper/fisiologia , Animais , Imidas/isolamento & purificação , Piper/química , Piper/classificação , Especificidade da Espécie , Árvores
2.
J Chem Ecol ; 29(11): 2499-514, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14682530

RESUMO

The tropical rainforest shrub Piper cenocladum, which is normally defended against herbivores by a mutualistic ant, contains three amides that have various defensive functions. While the ants are effective primarily against specialist herbivores, we hypothesized that these secondary compounds would be effective against a wider range of insects, thus providing a broad array of defenses against herbivores. We also tested whether a mixture of amides would be more effective against herbivores than individual amides. Diets spiked with amides were offered to five herbivores: a naïve generalist caterpillar (Spodoptera frugiperda), two caterpillar species that are monophagous on P. cenocladum (Eois spp.), leaf-cutting ants (Atta cephalotes), and an omnivorous ant (Paraponera clavata). Amides had negative effects on all insects, whether they were naïve, experienced, generalized, or specialized feeders. For Spodoptera, amide mixtures caused decreased pupal weights and survivorship and increased development times. Eois pupal weights, larval mass gain, and development times were affected by additions of individual amides, but increased parasitism and lower survivorship were caused only by the amide mixture. Amide mixtures also deterred feeding by the two ant species, and crude plant extracts were strongly deterrent to P. clavata. The mixture of all three amides had the most dramatic deterrent and toxic effects across experiments, with the effects usually surpassing expected additive responses, indicating that these compounds can act synergistically against a wide array of herbivores.


Assuntos
Amidas/isolamento & purificação , Amidas/farmacologia , Piper/química , Piper/crescimento & desenvolvimento , Plantas Comestíveis , Animais , Formigas , Comportamento Alimentar , Larva , Mariposas , Dinâmica Populacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...