Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-457419

RESUMO

Antivirals that specifically target SARS-CoV-2 are needed to control the COVID-19 pandemic. The main protease (Mpro) is essential for SARS-CoV-2 replication and is an attractive target for antiviral development. Here we report the use of the Random nonstandard Peptide Integrated Discovery (RaPID) mRNA display on a chemically cross-linked SARS-CoV-2 Mpro dimer, which yielded several high-affinity thioether-linked cyclic peptide inhibitors of the protease. Structural analysis of Mpro complexed with a selenoether analogue of the highest-affinity peptide revealed key binding interactions, including glutamine and leucine residues in sites S1 and S2, respectively, and a binding epitope straddling both protein chains in the physiological dimer. Several of these Mpro peptide inhibitors possessed antiviral activity against SARS-CoV-2 in vitro with EC50 values in the low micromolar range. These cyclic peptides serve as a foundation for the development of much needed antivirals that specifically target SARS-CoV-2.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-424069

RESUMO

The COVID-19 pandemic, caused by SARS-CoV-2, has led to substantial morbidity, mortality and disruption globally. Cellular entry of SARS-CoV-2 is mediated by the viral spike protein and affinity ligands to this surface protein have the potential for applications as antivirals and diagnostic reagents. Here, we describe the affinity selection of cyclic peptide ligands to the SARS-CoV-2 spike protein receptor binding domain (RBD) from three distinct libraries (in excess of a trillion molecules each) by mRNA display. We identified six high affinity molecules with dissociation constants (KD) in the nanomolar range (15-550 nM) to the RBD. The highest affinity ligand could be used as an affinity reagent to detect spike protein in solution by ELISA, and the co-crystal structure of this molecule bound to the RBD demonstrated that it binds to a cryptic binding site, displacing a {beta}-strand near the C-terminus. Our findings provide key mechanistic insight into the binding of peptide ligands to the SARS-CoV-2 spike RBD and the ligands discovered in this work may find future use as reagents for diagnostic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...