Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Met Mater Int ; 28(11): 2735-2746, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340187

RESUMO

Abstract: Laser powder bed fusion (L-PBF) success in the industrial scenario strongly depends on the ability to manufacture components without defects and with high building rates, but also on the ability to effectively control the microstructure to gain the required properties in the final component. In this regard, the recently developed numerical simulation software of L-PBF technologies can represent an effective tool, since many of them provide solidification data (i.e. temperature gradient and cooling rate) useful for microstructure prediction. In this work, a numerical model was applied to simulate the processing of four single scan tracks of 316L stainless steel processed with different parameters. Temperature and cooling rate around the melt pool were extracted from the numerical model and used to estimate the microstructure cellular arm spacing and the microhardness. Experimental measurements were then compared with the estimated values revealing good agreement. The good agreement between experimental and estimated values shows the advantages of the proposed method for microstructure and microhardness prediction based on numerical modelling as a useful resource for process optimization according to the required final microstructural features.

2.
Materials (Basel) ; 10(3)2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28772617

RESUMO

Ultrasound treatment of liquid aluminum alloys is known to improve mechanical properties of castings. Aluminum foundry alloys are frequently used for production of parts that undergo severe cavitation erosion phenomena during service. In this paper, the effect of the ultrasound treatment on cavitation erosion resistance of AlSi7 alloy was assessed and compared to that of conventionally cast samples. Cavitation erosion tests were performed according to ASTM G32 standard on as-cast and heat treated castings. The response of the alloy in each condition was investigated by measuring the mass loss as a function of cavitation time and by analyzing the damaged surfaces by means of optical and scanning electron microscope. It was pointed out that the ultrasound treatment increases the cavitation erosion resistance of the alloy, as a consequence of the higher chemical and microstructural homogeneity, the finer grains and primary particles and the refined structure of the eutectic induced by the treatment itself.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...