Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 9(9): e106909, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25192013

RESUMO

Temperature-dependent fecundity and survival data was integrated into a matrix population model to describe relative Drosophila suzukii Matsumura (Diptera: Drosophilidae) population increase and age structure based on environmental conditions. This novel modification of the classic Leslie matrix population model is presented as a way to examine how insect populations interact with the environment, and has application as a predictor of population density. For D. suzukii, we examined model implications for pest pressure on crops. As case studies, we examined model predictions in three small fruit production regions in the United States (US) and one in Italy. These production regions have distinctly different climates. In general, patterns of adult D. suzukii trap activity broadly mimicked seasonal population levels predicted by the model using only temperature data. Age structure of estimated populations suggest that trap and fruit infestation data are of limited value and are insufficient for model validation. Thus, we suggest alternative experiments for validation. The model is advantageous in that it provides stage-specific population estimation, which can potentially guide management strategies and provide unique opportunities to simulate stage-specific management effects such as insecticide applications or the effect of biological control on a specific life-stage. The two factors that drive initiation of the model are suitable temperatures (biofix) and availability of a suitable host medium (fruit). Although there are many factors affecting population dynamics of D. suzukii in the field, temperature-dependent survival and reproduction are believed to be the main drivers for D. suzukii populations.


Assuntos
Drosophila/fisiologia , Tábuas de Vida , Modelos Biológicos , Temperatura , Animais , Produtos Agrícolas , Drosophila/crescimento & desenvolvimento , Feminino , Fertilidade , Frutas , Controle de Insetos/métodos , Itália , Dinâmica Populacional , Previsões Demográficas , Estados Unidos
2.
Environ Entomol ; 43(2): 501-10, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24612968

RESUMO

Temperature-related studies were conducted on Drosophila suzukii Matsumura (Diptera: Drosophilidae: Drosophilini). From 10-28°C, temperature had a significant impact on blueberries, Vaccinium corymbosum L. (Ericales: Ericaceae), and cherries, Prunus avium (L.) L. 1755 (Rosales: Rosaceae), important commercial hosts of D. suzukii. Temperature had a significant influence on D. suzukii developmental period, survival, and fecundity, with decreasing developmental periods as temperatures increased to 28°C. At 30°C, the highest temperature tested, development periods increased, indicating that above this temperature the developmental extremes for the species were approached. D. suzukii reared on blueberries had lower fecundity than reared on cherries at all temperatures where reproduction occurred. The highest net reproductive rate (R(o)) and intrinsic rate of population increase (r(m)) were recorded on cherries at 22°C and was 195.1 and 0.22, respectively. Estimations using linear and nonlinear fit for the minimum, optimal, and maximum temperatures where development can take place were respectively, 7.2, 28.1, and 42.1°C. The r(m) values were minimal, optimal, and maximal at 13.4, 21.0, and 29.3°C, respectively. Our laboratory cultures of D. suzukii displayed high rates of infection for Wolbachia spp. (Rickettsiales: Rickettsiaceae), and this infection may have impacted fecundity found in this study. A temperature-dependent matrix population estimation model using fecundity and survival data were run to determine whether these data could predict D. suzukii pressure based on environmental conditions. The model was applied to compare the 2011 and 2012 crop seasons in an important cherry production region. Population estimates using the model explained different risk levels during the key cherry harvest period between these seasons.


Assuntos
Mirtilos Azuis (Planta)/parasitologia , Drosophila/crescimento & desenvolvimento , Prunus/parasitologia , Temperatura , Agricultura , Análise de Variância , Animais , Feminino , Fertilidade/fisiologia , Longevidade/fisiologia , Modelos Biológicos , Oregon , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...