Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hear Res ; 341: 190-201, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27498399

RESUMO

Todd et al. (2014ab) have recently demonstrated the presence of vestibular-dependent contributions to auditory evoked potentials (AEPs) when passing through the vestibular threshold as determined by vestibular evoked myogenic potentials (VEMPs), including a particular deflection labeled as an N42/P52 prior to the long-latency AEPs N1 and P2. In this paper we report the results of an experiment to determine the effect of inter-stimulus interval (ISI) and regularity on potentials recorded above and below VEMP threshold. Five healthy, right-handed subjects were recruited and evoked potentials were recorded to binaurally presented sound stimulation, above and below vestibular threshold, at seven stimulus rates with ISIs of 212, 300, 424, 600, 848, 1200 and 1696 ms. The inner five intervals, i.e. 300, 424, 600, 848, 1200 ms, were presented twice in both regular and irregular conditions. ANOVA on the global field power (GFP) were conducted for each of four waves, N42, P52, N1 and P2 with factors of intensity, ISI and regularity. Both N42 and P52 waves showed significant ANOVA effects of intensity but no other main effects or interactions. In contrast both N1 and P2 showed additional effects of ISI, as well as intensity, and evidence of non-linear interactions between ISI and intensity. A source analysis was carried out consistent with prior work suggesting that when above vestibular threshold, in addition to bilateral superior temporal cortex, ocular, cerebellar and cingulate sources are recruited. Further statistical analysis of the source currents indicated that the origin of the interactions with intensity may be the ISI sensitivity of the vestibular-dependent sources. This in turn may reflect a specific vestibular preference for stimulus rates associated with locomotion, i.e. rates close to 2 Hz, or ISIs close to 500 ms, where saccular afferents show increased gain and the corresponding reflexes are most sensitive.


Assuntos
Limiar Auditivo , Potenciais Evocados Auditivos , Tempo de Reação , Potenciais Evocados Miogênicos Vestibulares , Vestíbulo do Labirinto/fisiologia , Estimulação Acústica , Adulto , Eletroencefalografia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Movimento , Som , Adulto Jovem
2.
Hear Res ; 312: 91-102, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24699384

RESUMO

Todd et al. (2014) have recently demonstrated the presence of vestibular dependent changes both in the morphology and in the intensity dependence of auditory evoked potentials (AEPs) when passing through the vestibular threshold as determined by vestibular evoked myogenic potentials (VEMPs). In this paper we extend this work by comparing left vs. right ear stimulation and by conducting a source analysis of the resulting evoked potentials of short and long latency. Ten healthy, right-handed subjects were recruited and evoked potentials were recorded to both left- and right-ear sound stimulation, above and below vestibular threshold. Below VEMP threshold, typical AEPs were recorded, consisting of mid-latency (MLR) waves Na and Pa followed by long latency AEPs (LAEPs) N1 and P2. In the supra-threshold condition, the expected changes in morphology were observed, consisting of: (1) short-latency vestibular evoked potentials (VsEPs) which have no auditory correlate, i.e. the ocular VEMP (OVEMP) and inion response related potentials; (2) a later deflection, labelled N42/P52, followed by the LAEPs N1 and P2. Statistical analysis of the vestibular dependent responses indicated a contralateral effect for inion related short-latency responses and a left-ear/right-hemisphere advantage for the long-latency responses. Source analysis indicated that the short-latency effects may be mediated by a contralateral projection to left cerebellum, while the long-latency effects were mediated by a contralateral projection to right cingulate cortex. In addition we found evidence of a possible vestibular contribution to the auditory T-complex in radial temporal lobe sources. These last results raise the possibility that acoustic activation of the otolith organs could potentially contribute to auditory processing.


Assuntos
Giro do Cíngulo/fisiologia , Tempo de Reação/fisiologia , Localização de Som/fisiologia , Potenciais Evocados Miogênicos Vestibulares/fisiologia , Vestíbulo do Labirinto/fisiologia , Estimulação Acústica/métodos , Adulto , Ar , Limiar Auditivo/fisiologia , Eletroencefalografia , Feminino , Humanos , Masculino , Adulto Jovem
3.
Q J Exp Psychol (Hove) ; 59(10): 1709-24, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16945856

RESUMO

Four experiments examined judgements of the duration of auditory and visual stimuli. Two used a bisection method, and two used verbal estimation. Auditory/visual differences were found when durations of auditory and visual stimuli were explicitly compared and when durations from both modalities were mixed in partition bisection. Differences in verbal estimation were also found both when people received a single modality and when they received both. In all cases, the auditory stimuli appeared longer than the visual stimuli, and the effect was greater at longer stimulus durations, consistent with a "pacemaker speed" interpretation of the effect. Results suggested that Penney, Gibbon, and Meck's (2000) "memory mixing" account of auditory/visual differences in duration judgements, while correct in some circumstances, was incomplete, and that in some cases people were basing their judgements on some preexisting temporal standard.


Assuntos
Percepção Auditiva/fisiologia , Julgamento/fisiologia , Percepção Visual/fisiologia , Estimulação Acústica/métodos , Análise de Variância , Humanos , Memória/fisiologia , Estimulação Luminosa/métodos , Estudantes/psicologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA