Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
J Exp Psychol Gen ; 153(8): 2174-2192, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39101912

RESUMO

Despite the vital role of curiosity-driven exploration in learning, our understanding of how to enhance children's curiosity remains limited. Here, we tested whether hearing a strategic curiosity story with curiosity-promoting themes (e.g., strategically approaching uncertainty, adapting flexibly to new information) versus a control story with traditional pedagogical themes (e.g., following rules, learning from others) would influence children's strategic exploration across two cultures. Three- to 6-year-olds from the United States (N = 138) and Turkey (N = 88) were randomly assigned to hear one of these stories over Zoom, before playing a game in which they searched for sea creatures across five fish tanks. All tanks had the same number of hiding spots but varied in the number of creatures they contained. Time was limited and children could not return to prior tanks, pushing them to allocate search effort strategically. Results indicated that across both countries, children in the strategic curiosity condition explored the virtual "aquarium" more broadly; they moved through tanks more rapidly than children in the control condition and were more likely to explore all five tanks before time ran out. Children in the strategic curiosity condition also showed relatively more strategic search, adapting their search based on the likelihood of finding creatures in each tank. While further research is needed to pinpoint which elements of our stories produced differences in search behavior and whether they did so by enhancing or inhibiting children's strategic exploration, storybooks appear to be a promising method for shaping children's exploration across multiple countries. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Assuntos
Comportamento Exploratório , Humanos , Turquia , Criança , Masculino , Feminino , Estados Unidos , Pré-Escolar , Aprendizagem , Comparação Transcultural
2.
Nucleic Acids Res ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39106168

RESUMO

Cellular stress pathways that inhibit translation initiation lead to transient formation of cytoplasmic RNA/protein complexes known as stress granules. Many of the proteins found within stress granules and the dynamics of stress granule formation and dissolution are implicated in neurodegenerative disease. Whether stress granule formation is protective or harmful in neurodegenerative conditions is not known. To address this, we took advantage of the alphavirus protein nsP3, which selectively binds dimers of the central stress granule nucleator protein G3BP and markedly reduces stress granule formation without directly impacting the protein translational inhibitory pathways that trigger stress granule formation. In Drosophila and rodent neurons, reducing stress granule formation with nsP3 had modest impacts on lifespan even in the setting of serial stress pathway induction. In contrast, reducing stress granule formation in models of ataxia, amyotrophic lateral sclerosis and frontotemporal dementia largely exacerbated disease phenotypes. These data support a model whereby stress granules mitigate, rather than promote, neurodegenerative cascades.

3.
bioRxiv ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39005384

RESUMO

The nuclear RNA-binding protein TDP43 is integrally involved in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Previous studies uncovered N-terminal TDP43 isoforms that are predominantly cytosolic in localization, highly prone to aggregation, and enriched in susceptible spinal motor neurons. In healthy cells, however, these shortened (s)TDP43 isoforms are difficult to detect in comparison to full-length (fl)TDP43, raising questions regarding their origin and selective regulation. Here, we show that sTDP43 is created as a byproduct of TDP43 autoregulation and cleared by nonsense mediated RNA decay (NMD). The sTDP43-encoding transcripts that escape NMD can lead to toxicity but are rapidly degraded post-translationally. Circumventing these regulatory mechanisms by overexpressing sTDP43 results in neurodegeneration in vitro and in vivo via N-terminal oligomerization and impairment of flTDP43 splicing activity, in addition to RNA binding-dependent gain-of-function toxicity. Collectively, these studies highlight endogenous mechanisms that tightly regulate sTDP43 expression and provide insight into the consequences of aberrant sTDP43 accumulation in disease.

4.
Ecol Evol ; 14(5): e11385, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38742187

RESUMO

Despite seawalls becoming ubiquitous coastal features, and having some physical similarities to natural rocky shores, it remains unclear how these urban habitats influence predator-prey interactions. Predators can affect intertidal mobile prey densities through two pathways: (1) successful predation directly influences prey mortality rates, and (2) direct and indirect effects of predation can scare and induce motile prey to seek safer areas. In this study, we investigated whether intertidal predators affect the density of the marine gastropod, Nerita undata, at four seawall sites in Singapore. Using a tethering method that we developed, we monitored the mortality and other evidence of predation (shell state) of tethered N. undata. Field experiments revealed high (22.5%-82.5%) predation potential of N. undata across the four sites, with significantly higher predation risk at lower shore heights and for snails with mixed shell coloration. Observations and analysis of the shell state after 3 days showed that predation on seawalls was primarily by crushing predators such as fish. Other predators of N. undata include predatory snails, with various feeding methods that left behind different predator signatures. Our results add substantially to the limited knowledge on predator-prey interactions on seawalls, particularly for Nerita undata, and suggest that seawall systems are more dynamic than previously thought. This further highlights the role of these artificial structures as important habitats and feeding grounds in urban coastal ecosystems.

6.
medRxiv ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38746091

RESUMO

Tandem repeat sequences comprise approximately 8% of the human genome and are linked to more than 50 neurodegenerative disorders. Accurate characterization of disease-associated repeat loci remains resource intensive and often lacks high resolution genotype calls. We introduce a multiplexed, targeted nanopore sequencing panel and HMMSTR, a sequence-based tandem repeat copy number caller. HMMSTR outperforms current signal- and sequence-based callers relative to two assemblies and we show it performs with high accuracy in heterozygous regions and at low read coverage. The flexible panel allows us to capture disease associated regions at an average coverage of >150x. Using these tools, we successfully characterize known or suspected repeat expansions in patient derived samples. In these samples we also identify unexpected expanded alleles at tandem repeat loci not previously associated with the underlying diagnosis. This genotyping approach for tandem repeat expansions is scalable, simple, flexible, and accurate, offering significant potential for diagnostic applications and investigation of expansion co-occurrence in neurodegenerative disorders.

7.
Mar Environ Res ; 197: 106487, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583358

RESUMO

Seagrass beds can trap large amounts of marine debris leading to areas of accumulation, known as 'sinks', of anthropogenic particles. While the presence of vegetation can enhance accumulation, less is known about how the trapping effect changes from vegetated to less vegetated patches. To test this, vegetation and sediment were sampled along a vegetation percent cover gradient from the centre of seagrass beds to nearby less vegetated patches. To determine whether trapped particles can lead to increased accumulation in associated fauna, gastropods were also collected from the transects laid across this gradient. Extracted anthropogenic particles were counted and characterised. Particles were detected in all sample types and reached quantifiable limits in at least 50% of sediment and gastropod samples. There was no significant difference in the distribution of particles found in seagrass beds compared to less vegetated patches, suggesting other factors contribute to the trapping efficiency of biogenic habitats besides simply the presence or absence of vegetation.


Assuntos
Microplásticos , Plásticos , Ecossistema
8.
Sci Rep ; 14(1): 8538, 2024 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609456

RESUMO

Characterisation of genomic variation among corals can help uncover variants underlying trait differences and contribute towards genotype prioritisation in coastal restoration projects. For example, there is growing interest in identifying resilient genotypes for transplantation, and to better understand the genetic processes that allow some individuals to survive in specific conditions better than others. The coral species Pocillopora acuta is known to survive in a wide range of habitats, from reefs artificial coastal defences, suggesting its potential use as a starter species for ecological engineering efforts involving coral transplantation onto intertidal seawalls. However, the intertidal section of coastal armour is a challenging environment for corals, with conditions during periods of emersion being particularly stressful. Here, we scanned the entire genome of P. acuta corals to identify the regions harbouring single nucleotide polymorphisms (SNPs) and copy number variations (CNVs) that separate intertidal colonies (n = 18) from those found in subtidal areas (n = 21). Findings revealed 74,391 high quality SNPs distributed across 386 regions of the P. acuta genome. While the majority of the detected SNPs were in non-coding regions, 12% were identified in exons (i.e. coding regions). Functional SNPs that were significantly associated with intertidal colonies were found in overrepresented genomic regions linked to cellular homeostasis, metabolism, and signalling processes, which may represent local environmental adaptation in the intertidal. Interestingly, regions that exhibited CNVs were also associated with metabolic and signalling processes, suggesting P. acuta corals living in the intertidal have a high capacity to perform biological functions critical for survival in extreme environments.


Assuntos
Antozoários , Variações do Número de Cópias de DNA , Humanos , Animais , Genótipo , Genômica , Antozoários/genética , Engenharia
9.
Sci Total Environ ; 921: 171077, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38382597

RESUMO

Coral reefs are increasingly identified as microplastic sinks. Understanding the trapping and deposition effects on microplastics among coral colonies of different morphologies can help identify which corals and coral reefs are at higher risk of microplastic exposure. Here, we used a current-generating saltwater flume to explore microplastic trapping and deposition among branching coral, Pocillopora acuta, colonies with contrasting morphologies (open and compact), together with varying coral surface conditions (live, dead, and waxed), microplastic sizes (400 to 500 µm and 900 to 1000 µm), and seeding points (above-colony and mid-colony). Results revealed that more microplastics were trapped by, and deposited nearer to, compact colonies compared to those with a more open morphology-likely due to differences in flow dynamics. More of the larger microplastics were trapped, as were those introduced at the mid seeding point, but coral surface condition had no significant effect. These findings add to the growing evidence that corals are effective at trapping and facilitating deposition of microplastics. Branching corals with compact structures are potentially at high risk of microplastic pollution impact. We posit that coral composition, i.e. the relative abundance of compact branching colonies, will affect microplastic accumulation in natural reef environments. SYNOPSIS: This study demonstrates the effects of coral morphology on microplastic trapping and deposition, providing mechanistic insights into the factors that contribute to coral reefs acting as microplastic sinks.


Assuntos
Antozoários , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Plásticos , Tamanho da Partícula , Poluentes Químicos da Água/análise , Recifes de Corais , Ecossistema
10.
Nucleic Acids Res ; 52(10): 5928-5949, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38412259

RESUMO

A GGGGCC (G4C2) hexanucleotide repeat expansion in C9ORF72 causes amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), while a CGG trinucleotide repeat expansion in FMR1 leads to the neurodegenerative disorder Fragile X-associated tremor/ataxia syndrome (FXTAS). These GC-rich repeats form RNA secondary structures that support repeat-associated non-AUG (RAN) translation of toxic proteins that contribute to disease pathogenesis. Here we assessed whether these same repeats might trigger stalling and interfere with translational elongation. We find that depletion of ribosome-associated quality control (RQC) factors NEMF, LTN1 and ANKZF1 markedly boost RAN translation product accumulation from both G4C2 and CGG repeats while overexpression of these factors reduces RAN production in both reporter assays and C9ALS/FTD patient iPSC-derived neurons. We also detected partially made products from both G4C2 and CGG repeats whose abundance increased with RQC factor depletion. Repeat RNA sequence, rather than amino acid content, is central to the impact of RQC factor depletion on RAN translation-suggesting a role for RNA secondary structure in these processes. Together, these findings suggest that ribosomal stalling and RQC pathway activation during RAN translation inhibits the generation of toxic RAN products. We propose augmenting RQC activity as a therapeutic strategy in GC-rich repeat expansion disorders.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Demência Frontotemporal , Biossíntese de Proteínas , Proteínas Ribossômicas , Expansão das Repetições de Trinucleotídeos , Humanos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Ataxia , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Expansão das Repetições de DNA/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Sequência Rica em GC , Células HEK293 , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Ribossomos/metabolismo , Ribossomos/genética , Tremor , Expansão das Repetições de Trinucleotídeos/genética , Proteínas Ribossômicas/metabolismo
12.
bioRxiv ; 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37986813

RESUMO

Cellular stress pathways that inhibit translation initiation lead to transient formation of cytoplasmic RNA/protein complexes known as stress granules. Many of the proteins found within stress granules and the dynamics of stress granule formation and dissolution are implicated in neurodegenerative disease. Whether stress granule formation is protective or harmful in neurodegenerative conditions is not known. To address this, we took advantage of the alphavirus protein nsP3, which selectively binds dimers of the central stress granule nucleator protein G3BP (rin in Drosophila) and markedly reduces stress granule formation without directly impacting the protein translational inhibitory pathways that trigger stress granule formation. In Drosophila and rodent neurons, reducing stress granule formation with nsP3 had modest impacts on lifespan even in the setting of serial stress pathway induction. In contrast, reducing stress granule formation in models of ataxia, amyotrophic lateral sclerosis and frontotemporal dementia largely exacerbated disease phenotypes. These data support a model whereby stress granules mitigate, rather than promote, neurodegenerative cascades.

13.
Chem Sci ; 14(43): 12160-12165, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37969586

RESUMO

We demonstrate an atom-efficient and easy to use H2-driven biocatalytic platform for the enantioselective incorporation of 2H-atoms into amino acids. By combining the biocatalytic deuteration catalyst with amino acid dehydrogenase enzymes capable of reductive amination, we synthesised a library of multiply isotopically labelled amino acids from low-cost isotopic precursors, such as 2H2O and 15NH4+. The chosen approach avoids the use of pre-labeled 2H-reducing agents, and therefore vastly simplifies product cleanup. Notably, this strategy enables 2H, 15N, and an asymmetric centre to be introduced at a molecular site in a single step, with full selectivity, under benign conditions, and with near 100% atom economy. The method facilitates the preparation of amino acid isotopologues on a half-gram scale. These amino acids have wide applicability in the analytical life sciences, and in particular for NMR spectroscopic analysis of proteins. To demonstrate the benefits of the approach for enabling the workflow of protein NMR chemists, we prepared l-[α-2H,15N, ß-13C]-alanine and integrated it into a large (>400 kDa) heat-shock protein oligomer, which was subsequently analysable by methyl-TROSY techniques, revealing new structural information.

14.
Proc Natl Acad Sci U S A ; 120(42): e2312462120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37824523

RESUMO

Humans may retrieve words from memory by exploring and exploiting in "semantic space" similar to how nonhuman animals forage for resources in physical space. This has been studied using the verbal fluency test (VFT), in which participants generate words belonging to a semantic or phonetic category in a limited time. People produce bursts of related items during VFT, referred to as "clustering" and "switching." The strategic foraging model posits that cognitive search behavior is guided by a monitoring process which detects relevant declines in performance and then triggers the searcher to seek a new patch or cluster in memory after the current patch has been depleted. An alternative body of research proposes that this behavior can be explained by an undirected rather than strategic search process, such as random walks with or without random jumps to new parts of semantic space. This study contributes to this theoretical debate by testing for neural evidence of strategically timed switches during memory search. Thirty participants performed category and letter VFT during functional MRI. Responses were classified as cluster or switch events based on computational metrics of similarity and participant evaluations. Results showed greater hippocampal and posterior cerebellar activation during switching than clustering, even while controlling for interresponse times and linguistic distance. Furthermore, these regions exhibited ramping activity which increased during within-patch search leading up to switches. Findings support the strategic foraging model, clarifying how neural switch processes may guide memory search in a manner akin to foraging in patchy spatial environments.


Assuntos
Fonética , Semântica , Animais , Humanos , Comportamento Verbal/fisiologia , Testes Neuropsicológicos
15.
Microorganisms ; 11(9)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37764105

RESUMO

Allelopathic chemicals facilitated by the direct contact of macroalgae with corals are potentially an important mechanism mediating coral-macroalgal interactions, but only a few studies have explored their impacts on coral health and microbiomes and the coral's ability to recover. We conducted a field experiment on an equatorial urbanized reef to assess the allelopathic effects of four macroalgal species (Bryopsis sp., Endosiphonia horrida, Hypnea pannosa and Lobophora challengeriae) on the health and microbiomes of three coral species (Merulina ampliata, Montipora stellata and Pocillopora acuta). Following 24 h of exposure, crude extracts of all four macroalgal species caused significant coral tissue bleaching and reduction in effective quantum yield. The corals were able to recover within 72 h of the removal of extracts, except those that were exposed to L. challengeriae. While some macroalgal extracts caused an increase in the alpha diversity of coral microbiomes, there were no significant differences in the composition and variability of coral microbiomes between controls and macroalgal extracts at each sampling time point. Nevertheless, DESeq2 differential abundance analyses showed species-specific responses of coral microbiomes. Overall, our findings provide insights on the limited effect of chemically mediated interactions with macroalgae on coral microbiomes and the capacity of corals to recover quickly from the macroalgal chemicals.

16.
Cells ; 12(18)2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37759552

RESUMO

The premutation of the fragile X messenger ribonucleoprotein 1 (FMR1) gene is characterized by an expansion of the CGG trinucleotide repeats (55 to 200 CGGs) in the 5' untranslated region and increased levels of FMR1 mRNA. Molecular mechanisms leading to fragile X-premutation-associated conditions (FXPAC) include cotranscriptional R-loop formations, FMR1 mRNA toxicity through both RNA gelation into nuclear foci and sequestration of various CGG-repeat-binding proteins, and the repeat-associated non-AUG (RAN)-initiated translation of potentially toxic proteins. Such molecular mechanisms contribute to subsequent consequences, including mitochondrial dysfunction and neuronal death. Clinically, premutation carriers may exhibit a wide range of symptoms and phenotypes. Any of the problems associated with the premutation can appropriately be called FXPAC. Fragile X-associated tremor/ataxia syndrome (FXTAS), fragile X-associated primary ovarian insufficiency (FXPOI), and fragile X-associated neuropsychiatric disorders (FXAND) can fall under FXPAC. Understanding the molecular and clinical aspects of the premutation of the FMR1 gene is crucial for the accurate diagnosis, genetic counseling, and appropriate management of affected individuals and families. This paper summarizes all the known problems associated with the premutation and documents the presentations and discussions that occurred at the International Premutation Conference, which took place in New Zealand in 2023.


Assuntos
Proteína do X Frágil da Deficiência Intelectual , Síndrome do Cromossomo X Frágil , Humanos , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Mutação/genética , RNA Mensageiro/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Síndrome do Cromossomo X Frágil/diagnóstico , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/terapia
17.
Mar Environ Res ; 191: 106135, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37598615

RESUMO

Despite increasing research into the effects of microplastics on corals, no study to date has compared this relatively novel pollutant with a well-established stressor such as downwelling sediments. Here, Merulina ampliata coral fragments were exposed to polyethylene terephthalate (PET) and calcium carbonate particles (200-300 µm) at two deposition levels, high (115.20 ± 5.83 mg cm-2 d-1, mean ± SE) and low (22.87 ± 1.90 mg cm-2 d-1) in specially-designed Flow-Through Resuspension (FloTR) chambers. After 28 d, there were no significant differences between fragments exposed to sediments and microplastics for coral skeletal growth, Symbiodiniaceae density, and areal or cellular chlorophyll a concentrations. There were also no significant differences between levels of treatments, or with the control fragments. More PET microplastic particles were incorporated into the coral skeletons of fragments exposed to microplastics compared to those exposed to sediment and the control fragments, but there was no difference between fragments exposed to high and low microplastic levels. Together, the results show that M. ampliata appears to be able to cope with both microplastic and sediment stress, and suggests that microplastics do not represent a more serious threat than downwelling sediments at the levels tested.


Assuntos
Antozoários , Poluentes Químicos da Água , Animais , Microplásticos , Plásticos/toxicidade , Recifes de Corais , Clorofila A , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Sedimentos Geológicos
18.
Sci Rep ; 13(1): 11856, 2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481635

RESUMO

Human sociality is governed by two types of social norms: injunctive norms, which prescribe what people ought to do, and descriptive norms, which reflect what people actually do. The process by which these norms emerge and their causal influences on cooperative behavior over time are not well understood. Here, we study these questions through social norms influencing mask wearing during the COVID-19 pandemic. Leveraging 2 years of data from the United States (18 time points; n = 915), we tracked mask wearing and perceived injunctive and descriptive mask wearing norms as the pandemic unfolded. Longitudinal trends suggested that norms and behavior were tightly coupled, changing quickly in response to public health recommendations. In addition, longitudinal modeling revealed that descriptive norms caused future increases in mask wearing across multiple waves of data collection. These cross-lagged causal effects of descriptive norms were large, even after controlling for non-social beliefs and demographic variables. Injunctive norms, by contrast, had less frequent and generally weaker causal effects on future mask wearing. During uncertain times, cooperative behavior is more strongly driven by what others are actually doing, rather than what others think ought to be done.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Pandemias , Comportamento Cooperativo , Coleta de Dados , Saúde Pública
19.
Pers Individ Dif ; 213: 112297, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37324175

RESUMO

Given the importance of friendships during challenging times and the mixed associations between personality traits and disease-related behaviors, we investigated the correlations between personality traits and perceptions of friendships during the COVID-19 pandemic. Data were collected as part of a longitudinal investigation of the correlations between the pandemic and various cooperative relationships. In this investigation, we found that agreeableness and neuroticism predicted participants being more concerned about COVID-19 and bothered by friends' risky behavior, and extraversion predicted enjoying helping friends during the pandemic. Our results suggest that personality differences are associated with how individuals cope with friends' risky behaviors during the COVID-19 pandemic.

20.
bioRxiv ; 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37333274

RESUMO

A GGGGCC (G4C2) hexanucleotide repeat expansion in C9ORF72 causes amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), while a CGG trinucleotide repeat expansion in FMR1 leads to the neurodegenerative disorder Fragile X-associated tremor/ataxia syndrome (FXTAS). These GC-rich repeats form RNA secondary structures that support repeat-associated non-AUG (RAN) translation of toxic proteins that contribute to disease pathogenesis. Here we assessed whether these same repeats might trigger stalling and interfere with translational elongation. We find that depletion of ribosome-associated quality control (RQC) factors NEMF, LTN1, and ANKZF1 markedly boost RAN translation product accumulation from both G4C2 and CGG repeats while overexpression of these factors reduces RAN production in both reporter cell lines and C9ALS/FTD patient iPSC-derived neurons. We also detected partially made products from both G4C2 and CGG repeats whose abundance increased with RQC factor depletion. Repeat RNA sequence, rather than amino acid content, is central to the impact of RQC factor depletion on RAN translation - suggesting a role for RNA secondary structure in these processes. Together, these findings suggest that ribosomal stalling and RQC pathway activation during RAN translation elongation inhibits the generation of toxic RAN products. We propose augmenting RQC activity as a therapeutic strategy in GC-rich repeat expansion disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA