Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 4(1): 1122, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34556788

RESUMO

Hypoxia is a common feature in tumors and induces signaling that promotes tumor cell survival, invasion, and metastasis, but the impact of hypoxia inducible factor (HIF) signaling in the primary tumor on dissemination to bone in particular remains unclear. To better understand the contributions of hypoxia inducible factor 1 alpha (HIF1α), HIF2α, and general HIF pathway activation in metastasis, we employ a PyMT-driven spontaneous murine mammary carcinoma model with mammary specific deletion of Hif1α, Hif2α, or von Hippel-Lindau factor (Vhl) using the Cre-lox system. Here we show that Hif1α or Hif2α deletion in the primary tumor decreases metastatic tumor burden in the bone marrow, while Vhl deletion increases bone tumor burden, as hypothesized. Unexpectedly, Hif1α deletion increases metastatic tumor burden in the lung, while deletion of Hif2α or Vhl does not affect pulmonary metastasis. Mice with Hif1α deleted tumors also exhibit reduced bone volume as measured by micro computed tomography, suggesting that disruption of the osteogenic niche may be involved in the preference for lung dissemination observed in this group. Thus, we reveal that HIF signaling in breast tumors controls tumor dissemination in a site-specific manner.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Deleção de Genes , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Transdução de Sinais , Carga Tumoral , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias da Mama , Linhagem Celular Tumoral , Feminino , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Camundongos , Camundongos Knockout , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
2.
Oncogene ; 40(34): 5314-5326, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34247191

RESUMO

Despite advances in breast cancer treatment, residual disease driven by dormant tumor cells continues to be a significant clinical problem. Leukemia inhibitory factor receptor (LIFR) promotes a dormancy phenotype in breast cancer cells and LIFR loss is correlated with poor patient survival. Herein, we demonstrate that histone deacetylase inhibitors (HDACi), which are in phase III clinical trials for breast cancer, epigenetically induced LIFR and activated a pro-dormancy program in breast cancer cells. HDACi slowed breast cancer cell proliferation and reduced primary tumor growth. Primary breast tumors from HDACi-treated patients had increased LIFR levels and reduced proliferation rates compared to pre-treatment levels. Recent Phase II clinical trial data studying entinostat and azacitidine in metastatic breast cancer revealed that induction of several pro-dormancy genes post-treatment was associated with prolonged patient survival. Together, these findings suggest HDACi as a potential therapeutic avenue to promote dormancy, prevent recurrence, and improve patient outcomes in breast cancer.


Assuntos
Inibidores de Histona Desacetilases , Receptores de OSM-LIF , Mama , Neoplasias da Mama , Humanos , Subunidade alfa de Receptor de Fator Inibidor de Leucemia , Fenótipo
3.
Nature ; 593(7858): 282-288, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33828302

RESUMO

Cancer cells characteristically consume glucose through Warburg metabolism1, a process that forms the basis of tumour imaging by positron emission tomography (PET). Tumour-infiltrating immune cells also rely on glucose, and impaired immune cell metabolism in the tumour microenvironment (TME) contributes to immune evasion by tumour cells2-4. However, whether the metabolism of immune cells is dysregulated in the TME by cell-intrinsic programs or by competition with cancer cells for limited nutrients remains unclear. Here we used PET tracers to measure the access to and uptake of glucose and glutamine by specific cell subsets in the TME. Notably, myeloid cells had the greatest capacity to take up intratumoral glucose, followed by T cells and cancer cells, across a range of cancer models. By contrast, cancer cells showed the highest uptake of glutamine. This distinct nutrient partitioning was programmed in a cell-intrinsic manner through mTORC1 signalling and the expression of genes related to the metabolism of glucose and glutamine. Inhibiting glutamine uptake enhanced glucose uptake across tumour-resident cell types, showing that glutamine metabolism suppresses glucose uptake without glucose being a limiting factor in the TME. Thus, cell-intrinsic programs drive the preferential acquisition of glucose and glutamine by immune and cancer cells, respectively. Cell-selective partitioning of these nutrients could be exploited to develop therapies and imaging strategies to enhance or monitor the metabolic programs and activities of specific cell populations in the TME.


Assuntos
Neoplasias/metabolismo , Neoplasias/patologia , Nutrientes/metabolismo , Microambiente Tumoral , Animais , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Feminino , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Metabolismo dos Lipídeos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Neoplasias/imunologia , Microambiente Tumoral/imunologia
4.
PLoS One ; 16(1): e0243150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33481783

RESUMO

Patients with autoimmune disorders (AD) have altered cancer risks compared to the general population. Systemic lupus erythematosus and multiple sclerosis lead to a heightened risk for hematological malignancies and decreased risk for breast, ovarian, and prostate malignancies. Often patients with autoimmune disease have dysregulated antiviral immune responses, including against oncogenic viruses. To uncover the relationship between viral incidence and cancer risk in the context of autoimmune disease, we extracted electronic health records (EHR) from Vanderbilt University. ICD-9/10 codes and laboratory values were collected for hematological, lung, anal-vaginal, thyroid, hepatobiliary, bladder, prostate, and breast cancers; and viruses including Epstein Barr virus (EBV), Human papilloma virus (HPV), and Hepatitis A/B/C (Hep). Only viral infections that led to a physician visit or laboratory test were entered into the EMR; therefore, only clinically relevant cases were noted and considered positive in this study. The relationship between virus infection and cancer in an SLE cohort (SLE-cases n = 2,313, and SLE-controls n = 5,702) and an MS cohort (MS-case n = 7,277, MS-control n = 7,277) was examined by multilinear logistic regression. Viral infection was strongly associated with increased risk for cancer overall. SLE and MS patients were more susceptible to all viral infections. MS patients trended toward increased risk for cancers overall, while decreased risk for hormone-based cancers in SLE patients non-significantly reduced their risk for overall cancer. Both SLE and MS patients had increased clinically relevant EBV infection, which was associated with risk for hematological cancers. Preventing viral infections by vaccination may be especially helpful in controlling risk for cancer in SLE and MS patients.


Assuntos
Lúpus Eritematoso Sistêmico/epidemiologia , Lúpus Eritematoso Sistêmico/virologia , Esclerose Múltipla/epidemiologia , Esclerose Múltipla/virologia , Viroses/complicações , Estudos de Coortes , Intervalos de Confiança , Humanos , Incidência , Modelos Logísticos , Razão de Chances , Fatores de Risco
5.
Cancer Lett ; 489: 144-154, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32561416

RESUMO

Hypoxia is a common feature in tumors, driving pathways that promote epithelial-to-mesenchymal transition, invasion, and metastasis. Clinically, high levels of hypoxia-inducible factor (HIF) expression and stabilization at the primary site in many cancer types is associated with poor patient outcomes. Experimental evidence suggests that HIF signaling in the primary tumor promotes their dissemination to the bone, as well as the release of factors such as LOX that act distantly on the bone to stimulate osteolysis and form a pre-metastatic niche. Additionally, the bone itself is a generally hypoxic organ, fueling the activation of HIF signaling in bone resident cells, promoting tumor cell homing to the bone as well as osteoclastogenesis. The hypoxic microenvironment of the bone also stimulates the vicious cycle of tumor-induced bone destruction, further fueling tumor cell growth and osteolysis. Furthermore, hypoxia appears to regulate key tumor dormancy factors. Thus, hypoxia acts both on the tumor cells as well as the metastatic site to promote tumor cell metastasis.


Assuntos
Neoplasias Ósseas/secundário , Hipóxia Celular/fisiologia , Metástase Neoplásica/patologia , Osteólise/metabolismo , Animais , Neoplasias Ósseas/metabolismo , Humanos , Osteólise/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...