Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-447942

RESUMO

BackgroundAlthough progressive COVID-19 vaccinations provide a significant reduction of infection rate in the short-to mid-term, effective COVID-19 treatments will continue to be an urgent need. MethodsWe have functionally characterized the anti-SARS-CoV-2 hyperimmune immunoglobulin (hIG) prepared from human COVID-19 convalescent plasma. SARS-CoV-2 virus neutralization was evaluated by four different methodologies (plaque reduction, virus induced cytotoxicity, TCID50 reduction and immunofluorimetry-based methodology) performed at four different laboratories and using four geographically different SARS-CoV-2 isolates (one each from USA and Italy; two from Spain). Two of the isolates contained the D614G mutation. Neutralization capacity against the original Wuhan SARS-CoV-2 straom and variants (D614G mutant, B.1.1.7, P.1 and B.1.351 variants) was evaluated using a pseudovirus platform expressing the corresponding spike (S) protein. The capacity to induce antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) was also evaluated. ResultsAll the SARS-CoV-2 isolates tested were effectively neutralized by hIG solutions. This was confirmed by all four methodologies showing potent neutralization capacity. Wild-type SARS-CoV-2 and variants were effectively neutralized as demonstrated using the pseudovirus platform. The hIG solutions had the capacity to induce ADCC and ADCP against SARS-CoV-2 N and S proteins but not the E protein. Under our experimental conditions, very low concentrations (25-100 {micro}g IgG/mL) were required to induce both effects. Besides the S protein, we observed a clear and potent effect triggered by antibodies in the hIG solutions against the SARS-CoV-2 N protein. ConclusionsThese results show that, beyond neutralization, other IgG Fc-dependent pathways may play a role in the protection from and/or resolution of SARS-CoV-2 infection when using hIG COVID-19 products. This could be especially relevant for the treatment of more neutralization resistant SARS-CoV-2 variants of concern.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-388991

RESUMO

BACKGROUNDIn late 2019, the SARS-CoV-2 virus emerged in China and quickly spread into a world-wide pandemic. Prior to the development of specific drug therapies or a vaccine, more immediately available treatments were sought including convalescent plasma. A potential improvement from convalescent plasma could be the preparation of anti-SARS-CoV-2 hyperimmune globulin (hIVIG). STUDY DESIGN AND METHODSConvalescent plasma was collected from an existing network of plasma donation centers. A caprylate/chromatography purification process was used to manufacture hIVIG. Initial batches of hIVIG were manufactured in a versatile, small-scale facility designed and built to rapidly address emerging infectious diseases. RESULTSProcessing convalescent plasma into hIVIG resulted in a highly purified IgG product with more concentrated neutralizing antibody activity. hIVIG will allow for the administration of greater antibody activity per unit of volume with decreased potential for several adverse events associated with plasma administration. IgG concentration and IgG antibody specific to SARS-CoV-2 were increased over 10-fold from convalescent plasma to the final product. Normalized ELISA activity (per mg/mL IgG) was maintained throughout the process. Protein content in these final product batches was 100% IgG, consisting of 98% monomer and dimer forms. Potentially hazardous proteins (IgM, IgA, and anti-A, anti-B and anti-D antibodies) were reduced to minimal levels. CONCLUSIONSMultiple batches of anti-SARS-CoV-2 hyperimmune globulin (hIVIG) that met regulatory requirements were manufactured from human convalescent plasma. The first clinical study in which the hIVIG will be evaluated will be Inpatient Treatment with Anti-Coronavirus Immunoglobulin (ITAC) [NCT04546581].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA