Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(36): 42854-42867, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37652465

RESUMO

The rational design of interface materials containing carbon nanotubes (CNTs) and zeolites (zeolite-CNTs) is a promising perspective in chemical and biochemical communities because they exhibit several outstanding properties such as tunable hydrophobicity-hydrophilicity at interfaces. In this contribution, we report the fabrication of Ag-incorporated nanocrystalline BEA-carbon nanotube (CNT) composites via the one-pot inter-zeolite transformation of the micron-sized FAU-CNT composite in the presence of a Ag precursor. By varying the crystallization time, the inter-zeolite transformation mechanism was explored. Indeed, this process involves an amorphous intermediate of aluminosilicate species with a significant change of the crystal morphology in the presence of CNTs in the synthesis gel. Interestingly, the redispersion of metal particles was observed after the inter-zeolite transformation process, resulting in the high dispersion of metal nanoparticles over BEA nanocrystals. Notably, it was revealed that the Ag sites were also stabilized in the presence of CNT interfaces, leading to the availability of highly active Ag+ ions. To illustrate the beneficial aspect of designer materials, the synthesized Ag-incorporated BEA-CNT composites exhibited high antibacterial activity againstEscherichia coli due to the synergistic effect of the active Ag+ species and appropriate hydrophobic and hydrophilic properties of the hybrid material interfaces. This first example opens up perspectives of the rational design of zeolite-CNT interfaces with high metal dispersion via the inter-zeolite transformation approach for biomedical applications.

2.
J Microbiol Methods ; 175: 105997, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32645339

RESUMO

2,4-Dichlorophenoxyacetic acid (2,4-D) has been widely used as a herbicide for agricultural purposes. Currently, the available methods for detecting 2,4-D require multi-step sample preparations and expensive instruments. The use of a whole cell biosensor is an interesting approach that is straightforward and simple to use. In this study, we constructed a genetic-based Agrobacterium tumefaciens biosensor based on a cadA promoter and cadR regulator from Bradyrhizobium sp. strain HW13 (2,4-D degrader) with a formylglycine generating enzyme (FGE)-sulfatase as the reporter gene. The performance of the biosensor was further improved through direct evolution of the cadR activator. The detection limit of cadR mutants for phenoxyacetic acid herbicides including 2,4-D and 4-Chlorophenoxyacetic acid (4-CPAA) were 1.56 µM (an eight-fold improvement compared to wild-type CadR). The biosensor could detect 2,4-D contamination in environmental samples without encountering interference from other complex compounds. The Agrobacterium biosensor was also stable after storing in a simple Luria-Bertani (LB) medium at 4 °C for 30 days where the activity remained at 82% when exposed to 100 µM of 2,4-D. This novel biosensor, with its high stability under simple storage conditions, exhibits promising potential to be used as an inexpensive and easy-to-use tool to screen for 2,4-D contamination in environmental sources.


Assuntos
Ácido 2,4-Diclorofenoxiacético/análise , Agrobacterium tumefaciens/metabolismo , Técnicas Biossensoriais/métodos , Monitoramento Ambiental/métodos , Herbicidas/análise , Poluentes Químicos da Água/análise , Sulfatases/genética
3.
Int J Med Microbiol ; 310(2): 151396, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32005588

RESUMO

The occurrence of antibiotic resistance bacteria has become a major threat to public health. We have recently discovered a transcriptional activator that belongs to MarR family, EstR, and an esterase B (EstB) with a newly proposed de-arenethiolase activity from Sphingobium sp. SM42. De-arenethiolase activity involves the removal of the small aromatic side chain of cephalosporin antibiotics as an excellent leaving group by the enzymatic CS bond cleavage. Here, we report the regulation of estB through EstR as an activator in response to a third generation cephalosporin, cefoperazone, antibiotic. Cefoperazone induced the expression of estB in wild type Sphingobium sp., but not in the estR knockout strain, and the induction was restored in the complemented strain. Moreover, we revealed the importance of EstB localization in periplasm. Since EsB has the ability to inactivate selected ß-lactam antibiotics in vitro, it is possible that the enzyme works at the periplasmic space of Gram negative bacteria similar to ß-lactamases. EstB was genetically engineered by incorporating NlpA binding motif, or OmpA signal sequence, or SpyTag-SpyCatcher to the estB gene to mobilize it to different compartments of periplasm; inner membrane, outer membrane, and periplasmic space, respectively. Surprisingly, we found that Sphingobium sp. SM42 and E. coli expressing EstB at the periplasm were more sensitive to cefoperazone. The possible drug enhancement mechanism by enzyme was proposed. This work might lead to a novel strategy to tackle antibiotic resistance problem.


Assuntos
Cefoperazona/farmacologia , Cefalosporinas/farmacologia , Periplasma/enzimologia , Serina Endopeptidases/genética , Sphingomonadaceae/efeitos dos fármacos , Fatores de Transcrição/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Periplasma/efeitos dos fármacos , Sinais Direcionadores de Proteínas , Sphingomonadaceae/enzimologia , Sphingomonadaceae/genética
4.
Biochem Biophys Res Commun ; 506(1): 231-236, 2018 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-30343884

RESUMO

The esterase B (EstB) from Sphingobium sp. SM42, which was previously reported to be active towards dibutyl phthalate, can cleave some small aromatic ring side chains from cephalosporin derivatives. A new name, de-arenethiolase, has been proposed to represent this activity. We present the in vitro characterization of the activity of purified EstB toward cephalosporin substrates. Interestingly, EstB was highly active against cefoperazone and cefazolin resulting in 83 and 67% decreases in killing zone diameter, respectively. EstB also demonstrated a moderate activity towards ceftriaxone (18%) and cefotaxime (16%) while exhibiting no activity against cephalosporin C and cefixime. HPLC analysis indicated that EstB catalyzed the cleavage of the C-S bond found in cephalosporin derivatives to release the corresponding free aromatic ring side chains.


Assuntos
Cefalosporinas/metabolismo , Serina Endopeptidases/metabolismo , Sphingobacterium/enzimologia , Proteínas de Bactérias/metabolismo , Bacteroidetes/enzimologia , Cefotaxima/metabolismo , Ceftriaxona/metabolismo , Cefalosporinas/antagonistas & inibidores , Especificidade por Substrato
5.
Biochem Biophys Res Commun ; 502(1): 9-14, 2018 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-29777708

RESUMO

Genes responsible for the production of azoreductase enzymes in 2 gram-negative bacteria, the soil bacterium Pseudomonas putida (AzoP) and the plant pathogen Xanthomonas oryzae (AzoX), were identified. The deduced amino acid sequences of AzoP and AzoX, share 46% amino acid identity to each other. Two different bacterial transcription factors, a repressor (AzoPR) and an activator (AzoXR), in P. putida and X. oryzae, respectively, were found to be divergently oriented to their respective azoreductase genes. Both regulators are LysR-type transcriptional regulators (LTTR) that respond to the azo dye inducer, methyl red (MR). AzoPR represses transcription of azoP in P. putida, which is reversed when cells are exposed to MR. Interestingly, in X. oryzae, AzoXR positively regulates azoX transcription upon MR induction. Moreover, despite their similarity, with 51% amino acid sequence identity, azoPR and azoXR are expressed differently in response to MR. The transcription of azoPR is increased in a dye concentration-dependent manner, while azoXR transcription is constitutive and relatively higher than azoPR. Both regulators are autoregulatory. Gel mobility shift assays (EMSA) verified the binding between the regulators and their corresponding promoter regions. Additionally, binding only occurred under reduced conditions in the presence of 0.5 mM dithiothreitol (DTT), indicating that the proteins are active in their reduced form.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , NADH NADPH Oxirredutases/genética , Pseudomonas putida/genética , Fatores de Transcrição/genética , Xanthomonas/genética , Genes Bacterianos , Nitrorredutases , Regiões Promotoras Genéticas , Pseudomonas putida/enzimologia , Ativação Transcricional , Xanthomonas/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...