Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 4946, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-34400632

RESUMO

5-Hydroxymethylfurfural (HMF) has emerged as a crucial bio-based chemical building block in the drive towards developing materials from renewable resources, due to its direct preparation from sugars and its readily diversifiable scaffold. A key obstacle in transitioning to bio-based plastic production lies in meeting the necessary industrial production efficiency, particularly in the cost-effective conversion of HMF to valuable intermediates. Toward addressing the challenge of developing scalable technology for oxidizing crude HMF to more valuable chemicals, here we report coordinated reaction and enzyme engineering to provide a galactose oxidase (GOase) variant with remarkably high activity toward HMF, improved O2 binding and excellent productivity (>1,000,000 TTN). The biocatalyst and reaction conditions presented here for GOase catalysed selective oxidation of HMF to 2,5-diformylfuran offers a productive blueprint for further development, giving hope for the creation of a biocatalytic route to scalable production of furan-based chemical building blocks from sustainable feedstocks.


Assuntos
Furaldeído/análogos & derivados , Furaldeído/metabolismo , Galactose Oxidase/genética , Galactose Oxidase/metabolismo , Engenharia de Proteínas , Biocatálise , Catálise , Domínio Catalítico , Furanos , Galactose Oxidase/química , Mutagênese , Oxirredução
2.
Biotechnol Bioeng ; 114(6): 1222-1230, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28186335

RESUMO

Biocatalytic oxidation reactions employing molecular oxygen as the electron acceptor are difficult to conduct in a continuous flow reactor because of the requirement for high oxygen transfer rates. In this paper, the oxidation of glucose to glucono-1,5-lactone by glucose oxidase was used as a model reaction to study a novel continuous agitated cell reactor (ACR). The ACR consists of ten cells interconnected by small channels. An agitator is placed in each cell, which mixes the content of the cell when the reactor body is shaken by lateral movement. Based on tracer experiments, a hydrodynamic model for the ACR was developed. The model consisted of ten tanks-in-series with back-mixing occurring within and between each cell. The back-mixing was a necessary addition to the model in order to explain the observed phenomenon that the ACR behaved as two continuous stirred tank reactors (CSTRs) at low flow rates, while it at high flow rates behaved as the expected ten CSTRs in series. The performance of the ACR was evaluated by comparing the steady state conversion at varying residence times with the conversion observed in a stirred batch reactor of comparable size. It was found that the ACR could more than double the overall reaction rate, which was solely due to an increased oxygen transfer rate in the ACR caused by the intense mixing as a result of the spring agitators. The volumetric oxygen transfer coefficient, kL a, was estimated to be 344 h-1 in the 100 mL ACR, opposed to only 104 h-1 in a batch reactor of comparable working volume. Interestingly, the large deviation from plug flow behavior seen in the tracer experiments was found to have little influence on the conversion in the ACR, since both a plug flow reactor (PFR) model and the backflow cell model described the data sufficiently well. Biotechnol. Bioeng. 2017;114: 1222-1230. © 2017 Wiley Periodicals, Inc.


Assuntos
Reatores Biológicos , Glucose Oxidase/química , Glucose/química , Modelos Químicos , Oxigênio/química , Reologia/instrumentação , Técnicas de Cultura Celular por Lotes/instrumentação , Catálise , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Gluconatos/síntese química , Lactonas/síntese química , Oxirredução
3.
ChemCatChem ; 9(17): 3285-3288, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-29399209

RESUMO

Enzyme-mediated oxidation is of particular interest to synthetic organic chemists. However, the implementation of such systems demands knowledge of enzyme kinetics. Conventionally collecting kinetic data for biocatalytic oxidations is fraught with difficulties such as low oxygen solubility in water and limited oxygen supply. Here, we present a novel method for the collection of such kinetic data using a pressurized tube-in-tube reactor, operated in the low-dispersed flow regime to generate time-series data, with minimal material consumption. Experimental development and validation of the instrument revealed not only the high degree of accuracy of the kinetic data obtained, but also the necessity of making measurements in this way to enable the accurate evaluation of high KMO enzyme systems. For the first time, this paves the way to integrate kinetic data into the protein engineering cycle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...