Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36558066

RESUMO

The efficiency of the removal of Cs-137 radionuclides with porous and non-porous resorcinol−formaldehyde resins from alkaline solutions simulating the composition of real liquid radioactive waste (LRW) streams has been evaluated. Resins were synthesized through the polycondensation of resorcinol and formaldehyde in an alkaline medium at a molar ratio of 1.8/2.2 and a temperature of 210 °C. The Cs-137 distribution coefficients on RFRs in alkaline solutions simulating LRW were above 103 mL/g under static sorption conditions. In a model solution with pH 11, the full dynamic sorption capacity of non-porous RFR was 0.178 mmol/g. The values of the full dynamic sorption capacities of porous RFRs were 0.274 and 1.035 mmol/g for resins obtained with calcium carbonate and toluene as templates, respectively. When the sizes of RFR beads increased two-fold, the volume until 5% cesium breakthrough decreased by 20−40%. The most pronounced beneficial effect of the RFR's porosity was observed at flow rates from 25 to 50 BV/h. It was shown that the negative effect of metal cations on Cs-137 uptake increases in the following order: Na+ < Mg2+ < Ca2+ < K+. The number of bed volumes of LRW-simulating solution decontaminated with RFRs until 5% cesium breakthrough was above 450; that is higher than the value of known commercially available analogs. The latter shows that the developed RFRs are promising for application in technological schemes of alkaline LRW processing.

2.
Gels ; 7(4)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34940300

RESUMO

A series of resorcinol-formaldehyde resins (RFR) samples for Cs-137 removal from liquid alkaline media have been synthesized. It has been demonstrated that the chemical stability as well as sorption characteristics are determined by the resorcinol/formaldehyde molar ratio and the solidification temperature. It has been also demonstrated that the sample synthesized at the resorcinol/formaldehyde molar ratio of 1.8/2.2 and solidified at 210 °C is characterized by the best sorption-selective characteristics and chemical stability. Under dynamic conditions, at feeding >1000 bed volumes of a model solution with pH > 13, the RFR 3-1 goes through six sorption cycles without noticeable changes in the sorption characteristics. The results are presented that demonstrate the possibility of RFR application in the decontamination of real LRW from Cs-137.

3.
Materials (Basel) ; 14(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34639909

RESUMO

An Se-derivative of amidoxime was synthesized for the first time as a result of the reaction of oxidative polycondensation of N'-hydroxy-1,2,5-oxadiazole-3-carboximidamide with SeO2: its elementary units are linked to each other due to the formation of strong diselenide bridges. The element composition of the material was established, and the structure of the elementary unit was suggested. The sorption-selective properties were evaluated, and it was found that the adsorbent can be used for the selective recovery of U (VI) from liquid media with a pH of 6-9. The effect of some anions and cations on the efficiency of recovery of U (VI) was estimated. Composite materials were fabricated, in which silica gel with a content of 35, 50, and 65 wt.% was used as a matrix to be applied in sorption columns. The maximum values of adsorption of U (VI) calculated using the Langmuir equation were 620-760 mg g-1 and 370 mg g-1 for the composite and non-composite adsorbents, respectively. The increase in the kinetic parameters of adsorption in comparison with those of the non-porous material was revealed, along with the increase in the specific surface area of the composite adsorbents. In particular, the maximum sorption capacity and the rate of absorption of uranium from the solution increased two-fold.

4.
Biomimetics (Basel) ; 6(3)2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34287224

RESUMO

Data related to the fabrication of hybrid materials based on the polysaccharide chitosan were systematized and reviewed. The possibility of using chitosan as a "host" matrix for in situ synthesis of inorganic compounds for the preparation of various types of composite materials were investigated. Coprecipitation of metal oxides/hydroxides (Fe, Ni, Al, Zr, Cu and Mn) with chitosan was carried out through the alkalinization of solutions containing metal salts and chitosan, with the addition of ammonia or alkali solutions, homogeneous hydrolysis of urea, or electrophoretic deposition on the cathode. The synthesis of transition metal ferrocyanides and hydroxyapatite was achieved from precursor salts in a chitosan solution with simultaneous alkalinization. The mechanism of composite formation during the coprecipitation process of inorganic compounds with chitosan is discussed. Composite materials are of interest as sorbents, coatings, sensors, and precursors for the production of ceramic and electrode materials.

5.
Biomimetics (Basel) ; 5(2)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443617

RESUMO

Introduction of magnetic nanoparticles into composite sorbents based on polymer matrices has received great attention due to the possibility of using cheap iron oxides and removing spent sorbents by means of magnetic separation. In the present paper, we discuss the problem of creating magnetic sorbents using two types of matrices as host materials: synthetic cation exchange resin and natural aminopolysaccharide chitosan. The possibilities of applying matrices for the in situ formation of oxide phases of a specified composition with the required content of an inorganic component in a composite material were estimated. The composition of the oxide phase formed in the composite material was studied, and particle sizes were evaluated by the method of X-ray diffraction analysis. Magnetic characteristics were investigated. Sorption characteristics with respect to strontium for the composites containing iron oxides were determined.

6.
Materials (Basel) ; 13(5)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155824

RESUMO

The article describes the synthesis of composite sorbents by immobilizing iron oxide in a polymer matrix with subsequent hydrothermal treatment at a temperature of 175 °C. The sorbents based on magnetite and hematite were synthesized, their magnetic properties and phase composition were evaluated, and the iron content was determined. Sorption characteristics of the composites towards microconcentrations of Sr-90 radionuclide in solutions with different mineralization and pH were investigated. It was shown that the sorbent based on magnetite was the most efficient. In alkaline media with pH above 11, the composite sorbent based on magnetite exhibited increased selectivity towards Sr-90 and proved to be suitable for application under dynamic sorption conditions with subsequent desorption of the radionuclide with a solution of HNO3.

7.
Biomimetics (Basel) ; 3(4)2018 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31105260

RESUMO

Here, we discuss the fabrication and problems of application of chitosan-based composite materials for the removal of hazardous metal ions from tap water and wastewater. The chitosan-based composites containing iron oxides for the uptake of Sr2+ ions were fabricated via a co-precipitation method with variation of the iron/chitosan ratio and pH of the medium. The morphology and composition of the fabricated sorbents were characterized using scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX) and X-ray diffraction (XRD) analysis. We have shown that the suggested fabrication approach allows for a homogeneous distribution of the inorganic phase in the polymer matrix. Investigations of the sorption performance of the composites have shown that they are efficient sorbents for 90Sr radionuclides uptake from tap water. The composite sorbent containing amorphous iron oxide in a chitosan matrix and calcined at 105 °C showed the best sorption characteristics. We have also demonstrated that there is an optimal iron oxide content in the composite: with increasing oxide content, the efficiency of the sorbents decreases due to poor stability in solution, especially in alkaline media. The alternative approach yielding magnetic chitosan-based composites with sufficiently good sorption performance and stability in neutral and weakly alkaline media is suggested.

8.
J Hazard Mater ; 321: 326-334, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27639209

RESUMO

The origin of the emergence of radioactive contamination not removable in the process of acid-base regeneration of ion-exchange resins used in treatment of technological media and liquid radioactive waste streams has been determined. It has been shown that a majority of cesium radionuclides not removable by regeneration are bound to inorganic deposits on the surface and inside the ion-exchange resin beads. The nature of the above inorganic inclusions has been investigated by means of the methods of electron microscopy, IR spectrometry and X-ray diffraction. The method of decontamination of spent ion-exchange resins and zeolites contaminated with cesium radionuclides employing selective resorcinol-formaldehyde resins has been suggested. Good prospects of such an approach in deep decontamination of spent ion exchangers have been demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...