Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 13(34): 23514-23537, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37546214

RESUMO

Lead toxicity is a barrier to the widespread commercial manufacture of lead halide perovskites and their use in solar photovoltaic (PV) devices. Eco-friendly lead-free perovskite solar cells (PSCs) have been developed using certain unique non- or low-toxic perovskite materials. In this context, Sn-based perovskites have been identified as promising substitutes for Pb-based perovskites due to their similar characteristics. However, Sn-based perovskites suffer from chemical instability, which affects their performance in PSCs. This study employs theoretical simulations to identify ways to improve the efficiency of Sn-based PSCs. The simulations were conducted using the SCAPS-1D software, and a lead-free, non-toxic, and inorganic perovskite absorber layer (PAL), i.e. CsSnI3 was used in the PSC design. The properties of the hole transport layer (HTL) and electron transport layer (ETL) were tuned to optimize the performance of the device. Apart from this, seven different combinations of HTLs were studied, and the best-performing combination was found to be ITO/PCBM/CsSnI3/CFTS/Se, which achieved a power conversion efficiency (PCE) of 24.73%, an open-circuit voltage (VOC) of 0.872 V, a short-circuit current density (JSC) of 33.99 mA cm-2 and a fill factor (FF) of 83.46%. The second highest PCE of 18.41% was achieved by the ITO/PCBM/CsSnI3/CuSCN/Se structure. In addition to optimizing the structure of the PSC, this study also analyzes the current density-voltage (J-V) along with quantum efficiency (QE), as well as the impact of series resistance, shunt resistance, and working temperature, on PV performance. The results demonstrate the potential of the optimized structure identified in this study to enhance the standard PCE of PSCs. Overall, this study provides important insights into the development of lead-free absorber materials and highlights the potential of using CsSnI3 as the PAL in PSCs. The optimized structure identified in this study can be used as a base for further research to improve the efficiency of Sn-based PSCs.

2.
ACS Omega ; 8(25): 22466-22485, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37396227

RESUMO

CsSnI3 is considered to be a viable alternative to lead (Pb)-based perovskite solar cells (PSCs) due to its suitable optoelectronic properties. The photovoltaic (PV) potential of CsSnI3 has not yet been fully explored due to its inherent difficulties in realizing defect-free device construction owing to the nonoptimized alignment of the electron transport layer (ETL), hole transport layer (HTL), efficient device architecture, and stability issues. In this work, initially, the structural, optical, and electronic properties of the CsSnI3 perovskite absorber layer were evaluated using the CASTEP program within the framework of the density functional theory (DFT) approach. The band structure analysis revealed that CsSnI3 is a direct band gap semiconductor with a band gap of 0.95 eV, whose band edges are dominated by Sn 5s/5p electrons After performing the DFT analysis, we investigated the PV performance of a variety of CsSnI3-based solar cell configurations utilizing a one-dimensional solar cell capacitance simulator (SCAPS-1D) with different competent ETLs such as IGZO, WS2, CeO2, TiO2, ZnO, PCBM, and C60. Simulation results revealed that the device architecture comprising ITO/ETL/CsSnI3/CuI/Au exhibited better photoconversion efficiency among more than 70 different configurations. The effect of the variation in the absorber, ETL, and HTL thickness on PV performance was analyzed for the above-mentioned configuration thoroughly. Additionally, the impact of series and shunt resistance, operating temperature, capacitance, Mott-Schottky, generation, and recombination rate on the six superior configurations were evaluated. The J-V characteristics and the quantum efficiency plots for these devices are systematically investigated for in-depth analysis. Consequently, this extensive simulation with validation results established the true potential of CsSnI3 absorber with suitable ETLs including ZnO, IGZO, WS2, PCBM, CeO2, and C60 ETLs and CuI as HTL, paving a constructive research path for the photovoltaic industry to fabricate cost-effective, high-efficiency, and nontoxic CsSnI3 PSCs.

3.
Sci Rep ; 13(1): 2521, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781884

RESUMO

Cesium tin chloride (CsSnCl3) is a potential and competitive absorber material for lead-free perovskite solar cells (PSCs). The full potential of CsSnCl3 not yet been realized owing to the possible challenges of defect-free device fabrication, non-optimized alignment of the electron transport layer (ETL), hole transport layer (HTL), and the favorable device configuration. In this work, we proposed several CsSnCl3-based solar cell (SC) configurations using one dimensional solar cell capacitance simulator (SCAPS-1D) with different competent ETLs like indium-gallium-zinc-oxide (IGZO), tin-dioxide (SnO2), tungsten disulfide (WS2), ceric dioxide (CeO2), titanium dioxide (TiO2), zinc oxide (ZnO), C60, PCBM, and HTLs of cuprous oxide (Cu2O), cupric oxide (CuO), nickel oxide (NiO), vanadium oxide (V2O5), copper iodide (CuI), CuSCN, CuSbS2, Spiro MeOTAD, CBTS, CFTS, P3HT, PEDOT:PSS. Simulation results revealed that ZnO, TiO2, IGZO, WS2, PCBM, and C60 ETLs-based halide perovskites with ITO/ETLs/CsSnCl3/CBTS/Au heterostructure exhibited outstanding photoconversion efficiency retaining nearest photovoltaic parameters values among 96 different configurations. Further, for the six best-performing configurations, the effect of the CsSnCl3 absorber and ETL thickness, series and shunt resistance, working temperature, impact of capacitance, Mott-Schottky, generation and recombination rate, current-voltage properties, and quantum efficiency on performance were assessed. We found that ETLs like TiO2, ZnO, and IGZO, with CBTS HTL can act as outstanding materials for the fabrication of CsSnCl3-based high efficiency (η ≥ 22%) heterojunction SCs with ITO/ETL/CsSnCl3/CBTS/Au structure. The simulation results obtained by the SCAPS-1D for the best six CsSnCl3-perovskites SC configurations were compared by the wxAMPS (widget provided analysis of microelectronic and photonic structures) tool for further validation. Furthermore, the structural, optical and electronic properties along with electron charge density, and Fermi surface of the CsSnCl3 perovskite absorber layer were computed and analyzed using first-principle calculations based on density functional theory. Thus, this in-depth simulation paves a constructive research avenue to fabricate cost-effective, high-efficiency, and lead-free CsSnCl3 perovskite-based high-performance SCs for a lead-free green and pollution-free environment.

4.
ACS Omega ; 7(47): 43210-43230, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36467947

RESUMO

CsPbI3 has recently received tremendous attention as a possible absorber of perovskite solar cells (PSCs). However, CsPbI3-based PSCs have yet to achieve the high performance of the hybrid PSCs. In this work, we performed a density functional theory (DFT) study using the Cambridge Serial Total Energy Package (CASTEP) code for the cubic CsPbI3 absorber to compare and evaluate its structural, electronic, and optical properties. The calculated electronic band gap (E g) using the GGA-PBE approach of CASTEP was 1.483 eV for this CsPbI3 absorber. Moreover, the computed density of states (DOS) exhibited the dominant contribution from the Pb-5d orbital, and most charges also accumulated for the Pb atom as seen from the electronic charge density map. Fermi surface calculation showed multiband character, and optical properties were computed to investigate the optical response of CsPbI3. Furthermore, we used IGZO, SnO2, WS2, CeO2, PCBM, TiO2, ZnO, and C60 as the electron transport layers (ETLs) and Cu2O, CuSCN, CuSbS2, Spiro-MeOTAD, V2O5, CBTS, CFTS, P3HT, PEDOT:PSS, NiO, CuO, and CuI as the hole transport layers (HTLs) to identify the best HTL/CsPbI3/ETL combinations using the SCAPS-1D solar cell simulation software. Among 96 device structures, the best-optimized device structure, ITO/TiO2/CsPbI3/CBTS/Au, was identified, which exhibited an efficiency of 17.9%. The effect of the absorber and ETL thickness, series resistance, shunt resistance, and operating temperature was also evaluated for the six best devices along with their corresponding generation rate, recombination rate, capacitance-voltage, current density-voltage, and quantum efficiency characteristics. The obtained results from SCAPS-1D were also compared with wxAMPS simulation results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA