Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 73(7): 1992-2004, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-34850875

RESUMO

Root parasitic weeds of the Orobanchaceae, such as witchweeds (Striga spp.) and broomrapes (Orobanche and Phelipanche spp.), cause serious losses in agriculture worldwide, and efforts have been made to control these parasitic weeds. Understanding the characteristic physiological processes in the life cycle of root parasitic weeds is particularly important to identify specific targets for growth modulators. In our previous study, planteose metabolism was revealed to be activated soon after the perception of strigolactones in germinating seeds of O. minor. Nojirimycin inhibited planteose metabolism and impeded seed germination of O. minor, indicating a possible target for root parasitic weed control. In the present study, we investigated the distribution of planteose in dry seeds of O. minor by matrix-assisted laser desorption/ionization-mass spectrometry imaging. Planteose was detected in tissues surrounding-but not within-the embryo, supporting its suggested role as a storage carbohydrate. Biochemical assays and molecular characterization of an α-galactosidase family member, OmAGAL2, indicated that the enzyme is involved in planteose hydrolysis in the apoplast around the embryo after the perception of strigolactones, to provide the embryo with essential hexoses for germination. These results indicate that OmAGAL2 is a potential molecular target for root parasitic weed control.


Assuntos
Orobanche , Germinação/fisiologia , Hidrólise , Lactonas/metabolismo , Raízes de Plantas/metabolismo , Plantas Daninhas/metabolismo , Sementes , alfa-Galactosidase
2.
Mol Ther Methods Clin Dev ; 14: 47-55, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31309127

RESUMO

A gene delivery system that allows efficient and safe stem cell modification is critical for next-generation stem cell therapies. An RNA virus-based episomal vector (REVec) is a gene transfer system developed based on Borna disease virus (BoDV), which facilitates persistent intranuclear RNA transgene delivery without integrating into the host genome. In this study, we analyzed susceptibility of human induced pluripotent stem cell (iPSC) lines from different somatic cell sources to REVec, along with commonly used viral vectors, and demonstrated highly efficient REVec transduction of iPSCs. Using REVec encoding myogenic transcription factor MyoD1, we further demonstrated potential application of the REVec system for inducing differentiation of iPSCs into skeletal muscle cells. Of note, treatment with a small molecule, T-705, completely eliminated REVec in persistently transduced cells. Thus, the REVec system offers a versatile toolbox for stable, integration-free iPSC modification and trans-differentiation, with a unique switch-off mechanism.

3.
Antiviral Res ; 143: 237-245, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28465146

RESUMO

Bornaviruses, non-segmented, negative-strand RNA viruses, are emerging agents with the potential for causing various types of neurological symptoms. Previous studies have shown that ribavirin, a nucleic acid analog with broad-spectrum antiviral activity, has a potent antiviral effect on infections with a mammalian bornavirus, Borna disease virus (BoDV-1), as well as avian bornaviruses. However, ribavirin-based treatment does not eliminate bornaviruses from persistently infected cells and viral replication resumes after treatment cessation. Therefore, the development of a novel effective anti-bornavirus treatment is needed. To identify such agents, we screened nucleoside/nucleotide mimetics for agents with anti-bornavirus activity. We used Vero cells infected with recombinant BoDV-1 carrying Gaussia luciferase to monitor BoDV-1 replication and found that favipiravir (T-705) is a potent inhibitor of BoDV-1 replication. T-705 suppressed BoDV-1 replication in a dose- and time-dependent manner during the observation period of 4 weeks. Notably, no increase in luciferase activity or in the number of BoDV-1-positive cells was detected in the at least 4 weeks following T-705 removal. Finally, we demonstrated that T-705 effectively suppressed viral replication of both BoDV-1 and an avian bornavirus, suggesting that T-705 may have a strong antiviral activity against a broad range of bornaviruses. Our findings provide a novel and effective option for treating persistent bornavirus infection.


Assuntos
Amidas/farmacologia , Antivirais/farmacologia , Bornaviridae/efeitos dos fármacos , Pirazinas/farmacologia , Amidas/administração & dosagem , Animais , Antivirais/administração & dosagem , Doenças das Aves/virologia , Doença de Borna/tratamento farmacológico , Doença de Borna/virologia , Vírus da Doença de Borna/genética , Bornaviridae/genética , Linhagem Celular , Chlorocebus aethiops , Testes de Sensibilidade Microbiana , Pirazinas/administração & dosagem , Codorniz , RNA Viral/análise , Fatores de Tempo , Células Vero , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA