Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 38(1): e23391, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145327

RESUMO

Adipocytes play a key role in energy storage and homeostasis. Although the role of transcription factors in adipocyte differentiation is known, the effect of endogenous metabolites of low molecular weight remains unclear. Here, we analyzed time-dependent changes in the levels of these metabolites throughout adipocyte differentiation, using metabolome analysis, and demonstrated that there is a positive correlation between cyclic adenosine diphosphate ribose (cADPR) and Pparγ mRNA expression used as a marker of differentiation. We also found that the treatment of C3H10T1/2 adipocytes with cADPR increased the mRNA expression of those marker genes and the accumulation of triglycerides. Furthermore, inhibition of ryanodine receptors (RyR), which are activated by cADPR, caused a significant reduction in mRNA expression levels of the marker genes and triglyceride accumulation in adipocytes. Our findings show that cADPR accelerates adipocytic differentiation via RyR pathway.


Assuntos
Adipócitos , ADP-Ribose Cíclica , Camundongos , Animais , ADP-Ribose Cíclica/metabolismo , Adipócitos/metabolismo , Fatores de Transcrição/metabolismo , PPAR gama/metabolismo , Metaboloma , RNA Mensageiro/genética , Diferenciação Celular , Adenosina Difosfato Ribose/metabolismo , Adenosina Difosfato Ribose/farmacologia , Adipogenia/genética , Células 3T3-L1
2.
J Biol Chem ; 298(10): 102456, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36063990

RESUMO

Adipocyte browning is one of the potential strategies for the prevention of obesity-related metabolic syndromes, but it is a complex process. Although previous studies make it increasingly clear that several transcription factors and enzymes are essential to induce browning, it is unclear what dynamic and metabolic changes occur in induction of browning. Here, we analyzed the effect of a beta-adrenergic receptor agonist (CL316243, accelerator of browning) on metabolic change in mice adipose tissue and plasma using metabolome analysis and speculated that browning is regulated partly by inosine 5'-monophosphate (IMP) metabolism. To test this hypothesis, we investigated whether Ucp-1, a functional marker of browning, mRNA expression is influenced by IMP metabolism using immortalized adipocytes. Our study showed that mycophenolic acid, an IMP dehydrogenase inhibitor, increases the mRNA expression of Ucp-1 in immortalized adipocytes. Furthermore, we performed a single administration of mycophenolate mofetil, a prodrug of mycophenolic acid, to mice and demonstrated that mycophenolate mofetil induces adipocyte browning and miniaturization of adipocyte size, leading to adipose tissue weight loss. These findings showed that IMP metabolism has a significant effect on adipocyte browning, suggesting that the regulator of IMP metabolism has the potential to prevent obesity.


Assuntos
Adipócitos , Inosina Monofosfato , Ácido Micofenólico , Animais , Camundongos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Inosina Monofosfato/metabolismo , Metabolômica , Camundongos Endogâmicos C57BL , Ácido Micofenólico/farmacologia , Ácido Micofenólico/metabolismo , Obesidade/metabolismo , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...