Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Microbiol ; 63: 109-116, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34329942

RESUMO

Microbes in nature often live in dense and diverse communities exhibiting a variety of spatial structures. Microbial range expansion is a universal ecological process that enables populations to form spatial patterns. It can be driven by both passive and active processes, for example, mechanical forces from cell growth and bacterial motility. In this review, we provide a taste of recent creative and sophisticated efforts being made to address basic questions in spatial ecology and pattern formation during range expansion. We especially highlight the role of motility to shape community structures, and discuss the research challenges and future directions.


Assuntos
Microbiota , Bactérias/genética
2.
Nat Microbiol ; 5(8): 995-1001, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32424336

RESUMO

Growth laws emerging from studies of cell populations provide essential constraints on the global mechanisms that coordinate cell growth1-3. The foundation of bacterial cell cycle studies relies on two interconnected dogmas that were proposed more than 50 years ago-the Schaechter-Maaloe-Kjeldgaard growth law that relates cell mass to growth rate1 and Donachie's hypothesis of a growth-rate-independent initiation mass4. These dogmas spurred many efforts to understand their molecular bases and physiological consequences5-14. Although they are generally accepted in the fast-growth regime, that is, for doubling times below 1 h, extension of these dogmas to the slow-growth regime has not been consistently achieved. Here, through a quantitative physiological study of Escherichia coli cell cycles over an extensive range of growth rates, we report that neither dogma holds in either the slow- or fast-growth regime. In their stead, linear relations between the cell mass and the rate of chromosome replication-segregation were found across the range of growth rates. These relations led us to propose an integral-threshold model in which the cell cycle is controlled by a licensing process, the rate of which is related in a simple way to chromosomal dynamics. These results provide a quantitative basis for predictive understanding of cell growth-cell cycle relationships.


Assuntos
Ciclo Celular , Divisão Celular , Escherichia coli/metabolismo , Segregação de Cromossomos , Cromossomos Bacterianos/genética , Meios de Cultura/química , Replicação do DNA , Proteínas de Escherichia coli , Proteômica
4.
ACS Synth Biol ; 8(5): 962-967, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-30964646

RESUMO

Conventional techniques to synchronize bacterial cells often require manual manipulations and lengthy incubation lacking precise temporal control. An automated microfluidic device was recently developed to overcome these limitations. However, it exploits the stalk property of Caulobacter crescentus that undergoes asymmetric stalked and swarmer cell cycle stages and is therefore restricted to this species. To address this shortcoming, we have engineered Escherichia coli cells to adhere to microchannel walls via a synthetic and inducible "stalk". The pole of E. coli is capped by magnetic fluorescent nanoparticles via a polar-localized outer membrane protein. A mass of cells is immobilized in a microfluidic chamber by an externally applied magnetic field. Daughter cells are formed without the induced stalk and hence are flushed out, yielding a synchronous population of "baby" cells. The stalks can be tracked by GFP and nanoparticle fluorescence; no fluorescence signal is detected in the eluted cell population, indicating that it consists solely of daughters. The collected daughter cells display superb synchrony. The results demonstrate a new on-chip method to synchronize the model bacterium E. coli and likely other bacterial species, and also foster the application of synthetic biology to the study of the bacterial cell cycle.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Nanopartículas de Magnetita/química , Biologia Sintética/métodos , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Fluorescência Verde/genética , Dispositivos Lab-On-A-Chip , Campos Magnéticos , Microscopia de Interferência , Plasmídeos/genética , Plasmídeos/metabolismo , Biologia Sintética/instrumentação
5.
Haematologica ; 100(8): 1064-75, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26088929

RESUMO

Acute promyelocytic leukemia is an aggressive malignancy characterized by the accumulation of promyelocytes in the bone marrow. PML/RARA is the primary abnormality implicated in this pathology, but the mechanisms by which this chimeric fusion protein initiates disease are incompletely understood. Identifying PML/RARA targets in vivo is critical for comprehending the road to pathogenesis. Utilizing a novel sorting strategy, we isolated highly purified promyelocyte populations from normal and young preleukemic animals, carried out microarray and methylation profiling analyses, and compared the results from the two groups of animals. Surprisingly, in the absence of secondary lesions, PML/RARA had an overall limited impact on both the transcriptome and methylome. Of interest, we did identify down-regulation of secondary and tertiary granule genes as the first step engaging the myeloid maturation block. Although initially not sufficient to arrest terminal granulopoiesis in vivo, such alterations set the stage for the later, complete differentiation block seen in leukemia. Further, gene set enrichment analysis revealed that PML/RARA promyelocytes exhibit a subtle increase in expression of cell cycle genes, and we show that this leads to both increased proliferation of these cells and expansion of the promyelocyte compartment. Importantly, this proliferation signature was absent from the poorly leukemogenic p50/RARA fusion model, implying a critical role for PML in the altered cell-cycle kinetics and ability to initiate leukemia. Thus, our findings challenge the predominant model in the field and we propose that PML/RARA initiates leukemia by subtly shifting cell fate decisions within the promyelocyte compartment.


Assuntos
Metilação de DNA , Células Precursoras de Granulócitos/metabolismo , Leucemia Promielocítica Aguda/genética , Proteínas de Fusão Oncogênica/genética , Transcrição Gênica , Animais , Antígenos CD34/metabolismo , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Análise por Conglomerados , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Células Precursoras de Granulócitos/patologia , Humanos , Imunofenotipagem , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patologia , Camundongos , Camundongos Transgênicos , Células-Tronco Neoplásicas/metabolismo , Proteínas de Fusão Oncogênica/metabolismo
6.
Clin Cancer Res ; 19(7): 1773-83, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23307858

RESUMO

PURPOSE: To identify mediators of glioblastoma antiangiogenic therapy resistance and target these mediators in xenografts. EXPERIMENTAL DESIGN: We conducted microarray analysis comparing bevacizumab-resistant glioblastomas (BRG) with pretreatment tumors from the same patients. We established novel xenograft models of antiangiogenic therapy resistance to target candidate resistance mediator(s). RESULTS: BRG microarray analysis revealed upregulation versus pretreatment of receptor tyrosine kinase c-Met, which underwent further investigation because of its prior biologic plausibility as a bevacizumab resistance mediator. BRGs exhibited increased hypoxia versus pretreatment in a manner correlating with their c-Met upregulation, increased c-Met phosphorylation, and increased phosphorylation of c-Met-activated focal adhesion kinase and STAT3. We developed 2 novel xenograft models of antiangiogenic therapy resistance. In the first model, serial bevacizumab treatment of an initially responsive xenograft generated a xenograft with acquired bevacizumab resistance, which exhibited upregulated c-Met expression versus pretreatment. In the second model, a BRG-derived xenograft maintained refractoriness to the MRI tumor vasculature alterations and survival-promoting effects of bevacizumab. Growth of this BRG-derived xenograft was inhibited by a c-Met inhibitor. Transducing these xenograft cells with c-Met short hairpin RNA inhibited their invasion and survival in hypoxia, disrupted their mesenchymal morphology, and converted them from bevacizumab-resistant to bevacizumab-responsive. Engineering bevacizumab-responsive cells to express constitutively active c-Met caused these cells to form bevacizumab-resistant xenografts. CONCLUSION: These findings support the role of c-Met in survival in hypoxia and invasion, features associated with antiangiogenic therapy resistance, and growth and therapeutic resistance of xenografts resistant to antiangiogenic therapy. Therapeutically targeting c-Met could prevent or overcome antiangiogenic therapy resistance.


Assuntos
Inibidores da Angiogênese/farmacologia , Resistencia a Medicamentos Antineoplásicos , Neovascularização Patológica/genética , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Transcriptoma , Inibidores da Angiogênese/uso terapêutico , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Bevacizumab , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Análise por Conglomerados , Resistencia a Medicamentos Antineoplásicos/genética , Ativação Enzimática/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/mortalidade , Humanos , Camundongos , Invasividade Neoplásica/genética , Neovascularização Patológica/tratamento farmacológico , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Interferência de RNA , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Proc Natl Acad Sci U S A ; 109(44): 18042-7, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23064636

RESUMO

TGFß activation and signaling have been extensively studied in experimental models of allergen-induced asthma as potential therapeutic targets during chronic or acute phases of the disease. Outcomes of experimental manipulation of TGFß activity have been variable, in part due to use of different model systems. Using an ovalbumin (OVA)-induced mouse model of asthma, we here show that innate variation within TGFß1 genetic modifier loci, Tgfbm2 and Tgfbm3, alters disease susceptibility. Specifically, Tgfbm2(129) and Tgfbm3(C57) synergize to reverse accentuated airway hyperresponsiveness (AHR) caused by low TGFß1 levels in Tgfb1(+/-) mice of the NIH/OlaHsd strain. Moreover, epistatic interaction between Tgfbm2(129) and Tgfbm3(C57) uncouples the inflammatory response to ovalbumin from those of airway remodeling and airway hyperresponsiveness, illustrating independent genetic control of these responses. We conclude that differential inheritance of genetic variants of Tgfbm genes alters biological responses to reduced TGFß1 signaling in an experimental asthma model. TGFß antagonists for treatment of lung diseases might therefore give diverse outcomes, dependent on genetic variation.


Assuntos
Asma/genética , Epistasia Genética , Fator de Crescimento Transformador beta1/genética , Animais , Predisposição Genética para Doença , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
8.
Clin Cancer Res ; 18(10): 2930-42, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22472177

RESUMO

PURPOSE: To identify mechanisms and mediators of resistance to antiangiogenic therapy in human glioblastoma. EXPERIMENTAL DESIGN: We carried out microarray gene expression analysis and immunohistochemistry comparing 21 recurrent glioblastomas progressing during antiangiogenic treatment with VEGF neutralizing antibody bevacizumab to paired pretreatment tumors from the same patients. RESULTS: Microarray analysis revealed that bevacizumab-resistant glioblastomas (BRG) had two clustering patterns defining subtypes that reflect radiographic growth patterns. Enhancing BRGs (EBRG) exhibited MRI enhancement, a long-established criterion for glioblastoma progression, and expressed mitogen-activated protein kinases, neural cell adhesion molecule-1 (NCAM-1), and aquaporin 4. Compared with their paired pretreatment tumors, EBRGs had unchanged vascularity and hypoxia, with increased proliferation. Nonenhancing BRGs (NBRG) exhibited minimal MRI enhancement but had FLAIR-bright expansion, a newer criterion for glioblastoma recurrence since the advent of antiangiogenic therapy, and expressed integrin α5, laminin, fibronectin1, and PDGFRß. NBRGs had less vascularity, more hypoxia, and unchanged proliferation than their paired pretreatment tumors. Primary NBRG cells exhibited more stellate morphology with a 3-fold increased shape factor and were nearly 4-fold more invasive in Matrigel chambers than primary cells from EBRGs or bevacizumab-naive glioblastomas (P < 0.05). CONCLUSION: Using microarray analysis, we found two resistance patterns during antiangiogenic therapy with distinct molecular profiles and radiographic growth patterns. These studies provide valuable biologic insight into the resistance that has limited antiangiogenic therapy to date.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Perfilação da Expressão Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Anticorpos Monoclonais Humanizados/farmacologia , Aquaporina 4/biossíntese , Aquaporina 4/genética , Bevacizumab , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Antígeno CD56/biossíntese , Antígeno CD56/genética , Hipóxia Celular , Proliferação de Células , Células Cultivadas , Progressão da Doença , Fibronectinas/biossíntese , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Integrina alfa5/biossíntese , Laminina/biossíntese , Proteínas Quinases Ativadas por Mitógeno/biossíntese , Proteínas Quinases Ativadas por Mitógeno/genética , Neovascularização Patológica , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/biossíntese , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular
9.
Am J Med Genet A ; 143A(9): 925-32, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17394204

RESUMO

Constitutional submicroscopic DNA copy number alterations have been shown to cause numerous medical genetic syndromes, and are suspected to occur in a portion of cases for which the causal events remain undiscovered. Array comparative genomic hybridization (array CGH) allows high-throughput, high-resolution genome scanning for DNA dosage aberrations and thus offers an attractive approach for both clinical diagnosis and discovery efforts. Here we assess this capability by applying array CGH to the analysis of copy number alterations in 44 patients with a phenotype of the 22q11.2 deletion syndrome. Twenty-five patients had the deletion on chromosome 22 characteristic of this syndrome as determined by fluorescence in situ hybridization (FISH). The array measurements were in complete concordance with the FISH analysis, supporting their diagnostic utility. These data show that a genome-scanning microarray has the level of sensitivity and specificity required to prospectively interrogate and identify single copy number aberrations in a clinical setting. We demonstrate that such technology is ideally suited for microdeletion syndromes such as 22q11.2.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 22 , Síndrome de DiGeorge/diagnóstico , Síndrome de DiGeorge/genética , Hibridização de Ácido Nucleico/métodos , Mapeamento Cromossômico/métodos , Cromossomos Artificiais Bacterianos , Cromossomos Humanos , Clonagem Molecular , Dosagem de Genes , Humanos , Sensibilidade e Especificidade
10.
Clin Cancer Res ; 11(5): 1791-7, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15756001

RESUMO

PURPOSE: Although liver resection is the primary curative therapy for patients with colorectal hepatic metastases, most patients have a recurrence. Identification of molecular markers that predict patients at highest risk for recurrence may help to target further therapy. EXPERIMENTAL DESIGN: Array-based comparative genomic hybridization was used to investigate the association of DNA copy number alterations with outcome in patients with colorectal liver metastasis resected with curative intent. DNA from 50 liver metastases was labeled and hybridized onto an array consisting of 2,463 bacterial artificial chromosome clones covering the entire genome. The total fraction of genome altered (FGA) in the metastases and the patient's clinical risk score (CRS) were calculated to identify independent prognostic factors for survival. RESULTS: An average of 30 +/- 14% of the genome was altered in the liver metastases (14% gained and 16% lost). As expected, a lower CRS was an independent predictor of overall survival (P = 0.03). In addition, a high FGA also was an independent predictor of survival (P = 0.01). The median survival time in patients with a low CRS (score 0-2) and a high (> or =20%) FGA was 38 months compared with 18 months in patients with a low CRS and a low FGA. Supervised analyses, using Prediction Analysis of Microarrays and Significance Analysis of Microarrays, identified a set of clones, predominantly located on chromosomes 7 and 20, which best predicted survival. CONCLUSIONS: Both FGA and CRS are independent predictors of survival in patients with resected hepatic colorectal cancer metastases. The greater the FGA, the more likely the patient is to survive.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Dosagem de Genes , Perfilação da Expressão Gênica , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Análise de Sequência com Séries de Oligonucleotídeos , Idoso , Cromossomos Artificiais Bacterianos , DNA de Neoplasias/análise , Feminino , Genoma , Humanos , Hibridização In Situ , Neoplasias Hepáticas/cirurgia , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Fatores de Risco , Análise de Sobrevida
11.
Genome Res ; 12(2): 325-32, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11827952

RESUMO

DNA microarrays are now widely used to measure expression levels and DNA copy number in biological samples. Ratios of relative abundance of nucleic acids are derived from images of regular arrays of spots containing target genetic material to which fluorescently labeled samples are hybridized. Whereas there are a number of methods in use for the quantification of images, many of the software systems in wide use either encourage or require extensive human interaction at the level of individual spots on arrays. We present a fully automatic system for microarray image quantification. The system automatically locates both subarray grids and individual spots, requiring no user identification of any image coordinates. Ratios are computed based on explicit segmentation of each spot. On a typical image of 6000 spots, the entire process takes less than 20 sec. We present a quantitative assessment of performance on multiple replicates of genome-wide array-based comparative genomic hybridization experiments. By explicitly identifying the pixels in each spot, the system yields more accurate estimates of ratios than systems assuming spot circularity. The software, called, runs on Windows platforms and is available free of charge for academic use.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Neoplasias da Mama/genética , Feminino , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/estatística & dados numéricos , Humanos , Masculino , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Análise de Sequência com Séries de Oligonucleotídeos/estatística & dados numéricos , Coloração e Rotulagem , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...