Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 93(12): 123507, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36586932

RESUMO

A Ku-band (12-18 GHz) multichannel Doppler reflectometer (DR) has been developed in the GAMMA 10/potential control and divertor simulating experiment (PDX) tandem mirror device to improve the applicability of DR measurement for simultaneous monitoring of velocity of electron density turbulence at different locations. Our previous single-channel DR circuit has been replaced by the multichannel microwave system using a nonlinear transmission line based comb generator with heterodyne technique. The multichannel DR system has been installed in the central cell of GAMMA 10/PDX. Initial results of application to GAMMA 10/PDX plasma are presented, showing Doppler frequency shifts during an additional ion cyclotron resonance frequency heating and gas-puffing experiment.

2.
Rev Sci Instrum ; 93(11): 113535, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461436

RESUMO

Measuring the time variation of the wavenumber spectrum of turbulence is important for understanding the characteristics of high-temperature plasmas, and the application of a Doppler reflectometer with simultaneous multi-frequency sources is expected. To implement this diagnostic in future fusion devices, the use of a phased array antenna (PAA) that can scan microwave beams without moving antennas is recommended. Since the frequency-scanning waveguide leaky-wave antenna-type PAA has a complex structure, we have investigated its characteristics by modeling it with 3D metal powder additive manufacturing (AM). First, a single waveguide is fabricated to understand the characteristics of 3D AM techniques, and it is clear that there are differences in performance depending on the direction of manufacture and surface treatment. Then, a PAA is made, and it is confirmed that the beam can be emitted in any direction by frequency scanning. The plasma flow velocity can be measured by applying the 3D manufacturing PAA to plasma measurement.

3.
Rev Sci Instrum ; 93(11): 113518, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461466

RESUMO

Doppler-backscattering (DBS) has been used in several fusion plasma devices because it can measure the perpendicular velocity of electron density perturbation v⊥, the radial electric field Er, and the perpendicular wavenumber spectrum S(k⊥) with high wavenumber and spatial resolution. In particular, recently constructed frequency comb DBS systems enable observation of turbulent phenomena at multiple observation points in the radial direction. A dual-comb microwave DBS system has been developed for the large helical device plasma measurement. Since it is desirable to control the gain of each frequency-comb separately, a frequency-comb DBS system was developed with a function to adjust the gain of the scattered signal intensity of each channel separately. A correction processing method was also developed to correct the amplitude ratio and the phase difference between the in-phase and quadrature-phase signals of the scattered signals. As a result, the error in Doppler-shift estimation required to observe vertical velocity and the radial electric field was reduced, which enables more precise measurements.

4.
Sci Rep ; 12(1): 6979, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35577787

RESUMO

The preceding propagation of turbulence pulses has been observed for the first time in heat avalanche events during the collapse of the electron internal transport barrier (e-ITB) in the Large Helical Device. The turbulence and heat pulses are generated near the foot of the e-ITB and propagate to the peripheral region within a much shorter time than the diffusion timescale. The propagation speed of the turbulence pulse is approximately 10 km/s, which is faster than that of the heat pulse propagating at a speed of 1.5 km/s. The heat pulse propagates at approximately the same speed as that in the theoretical prediction, whereas the turbulence pulse propagates one order of magnitude faster than that in the prediction, thereby providing important insights into the physics of non-local transport.

5.
Sci Rep ; 12(1): 5507, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365747

RESUMO

Self-organized structure formation in magnetically confined plasmas is one of the most attractive subjects in modern experimental physics. Nonequilibrium media are known to often exhibit phenomena that cannot be predicted by superposition of linear theories. One representative example of such phenomena is the hydrogen isotope effect in fusion plasmas, where the larger the mass of the hydrogen isotope fuel is the better the plasma confinement becomes, contrary to what simple scaling models anticipate. In this article, threshold condition of a plasma structure formation is shown to have a strong hydrogen isotope effect. To investigate the underlying mechanism of this isotope effect, the electrostatic potential is directly measured by a heavy ion beam probe. It is elucidated that the core electrostatic potential transition occurs with less input power normalized by plasma density in plasmas with larger isotope mass across the structure formation. This observation is suggestive of the isotope effect in the radial electric field structure formation.

6.
Phys Rev Lett ; 127(22): 225001, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34889640

RESUMO

We assess the magnetic field configuration in modern fusion devices by comparing experiments with the same heating power, between a stellarator and a heliotron. The key role of turbulence is evident in the optimized stellarator, while neoclassical processes largely determine the transport in the heliotron device. Gyrokinetic simulations elucidate the underlying mechanisms promoting stronger ion scale turbulence in the stellarator. Similar plasma performances in these experiments suggests that neoclassical and turbulent transport should both be optimized in next step reactor designs.

7.
Rev Sci Instrum ; 92(4): 043536, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243406

RESUMO

A 90 GHz W-band millimeter-wave back-scattering system is designed and installed for measuring electron scale turbulence (k⊥ρs ∼ 40). A metal lens relay antenna is used for in-vessel beam focusing, and a beam diameter of less than 40 mm is achieved in the plasma core region. This antenna can be steered at an angle of 159° ± 6°, which almost covers the plasma radius. The estimated size of the scattering volume is ∼105 mm at the edge and 135 mm at the core, respectively. A 60 m corrugated waveguide is used to achieve a low transmission loss of ∼8 dB. A heterodyne detection system for millimeter-wave circuits with probing power modulation can distinguish the scattered signal from background noise.

8.
Rev Sci Instrum ; 92(3): 034711, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820101

RESUMO

A six-pole Q-band waveguide filter with a notch frequency above the Q-band has been developed for plasma diagnostics. The previous paper [Nishiura et al., J. Instrum. 10, C12014 (2015)] reported that the notch frequency exists within the standard band. In this study, the newly required notch filter extends the function, which prevents a thorny wave from being mixed into an instrument beyond the standard bandwidth of the waveguide. The mode control technique for cavities realizes a deep and sharp filter shape for Q-band notch filters with 56 and 77 GHz notches, respectively. The former filter has an attenuation more than 50 dB at 56.05 GHz and a bandwidth of 1.1 GHz at -3 dB. The latter filter has an attenuation more than 55 dB at 76.95 GHz and a bandwidth of 1.6 GHz at -3 dB. The electron cyclotron emission imaging and the electron cyclotron emission (ECE) diagnostics for the Q-band implemented a pair of the fabricated filters and demonstrated the ECE measurement successfully in the intense stray radiation from a 56 GHz gyrotron.

9.
Rev Sci Instrum ; 91(1): 014704, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32012645

RESUMO

In this paper, we present noncontact and noninvasive vital signal detection using a microwave reflectometer. Elimination of noise components due to random movement of human subjects has been the biggest issue for microwave measurement. Appropriate filtering, amplitude control of the reflectometer signal, and cross correlation among multiple reflectometers together with new algorithms have enabled motion artifact elimination, signal peak detection, and data processing for various parameters related to heart rate (HR) and heart rate variability (HRV). We focus here on the real time measurements of instantaneous HR and HRV for practical use. The evaluation by microwave reflectometry is completely noninvasive and feasible even through clothing, which is extremely effective for health maintenance in daily life as well as for preventing sudden death related to, for example, coronary heart disease and ventricular arrhythmia.


Assuntos
Frequência Cardíaca , Micro-Ondas , Processamento de Sinais Assistido por Computador , Feminino , Humanos , Masculino
10.
Phys Rev Lett ; 123(18): 185001, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31763903

RESUMO

The isotope effect on energy confinement time and thermal transport has been investigated for plasmas confined by a stellarator-heliotron magnetic field. This is the first detailed assessment of an isotope effect in a stellarator heliotron. Hydrogen and deuterium plasmas heated by neutral beam injection on the Large Helical Device have exhibited no significant dependence on the isotope mass in thermal energy confinement time, which is not consistent with the simple gyro-Bohm model. A comparison of thermal diffusivity for dimensionally similar hydrogen and deuterium plasmas in terms of the gyroradius, collisionality, and thermal pressure has clearly shown robust confinement improvement in deuterium to compensate for the unfavorable mass dependence predicted by the gyro-Bohm model.

11.
Rev Sci Instrum ; 89(10): 10H118, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399698

RESUMO

We succeeded in increasing the radial observation points of the microwave frequency comb Doppler reflectometer system from 8 to 20 (or especially up to 45) using the high sampling rate of 40 GS/s digital signal processing. For a new acquisition system, the estimation scheme of the Doppler shifted frequency is constructed and compared with the conventional technique. Also, the fine radial profile of perpendicular velocity is obtained, and it is found that the perpendicular velocity profile is consistent with the E × B drift velocity one.

12.
Sci Rep ; 8(1): 2804, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29434239

RESUMO

Interaction between a quasi-stable stationary MHD mode and a tongue-shaped deformation is observed in the toroidal plasma with energetic particle driven MHD bursts. The quasi-stable stationary 1/1 MHD mode with interchange parity appears near the resonant rational surface of q = 1 between MHD bursts. The tongue-shaped deformation rapidly appears at the non-resonant non-rational surface as a localized large plasma displacement and then collapses (tongue event). It curbs the stationary 1/1 MHD mode and then triggers the collapse of energetic particle and magnetic field reconnection. The rotating 1/1 MHD mode with tearing parity at the q = 1 resonant surface, namely, the MHD burst, is excited after the tongue event.

13.
Rev Sci Instrum ; 88(7): 073509, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28764512

RESUMO

A new method for measuring density fluctuation profiles near the edge of plasmas in the Large Helical Device (LHD) has been developed utilizing reflectometry combined with pellet-induced fast density scans. Reflectometer cutoff location was calculated by proportionally scaling the cutoff location calculated with fast far infrared laser interferometer (FIR) density profiles to match the slower time resolution results of the ray-tracing code LHD-GAUSS. Plasma velocity profile peaks generated with this reflectometer mapping were checked against velocity measurements made with charge exchange spectroscopy (CXS) and were found to agree within experimental uncertainty once diagnostic differences were accounted for. Measured density fluctuation profiles were found to peak strongly near the edge of the plasma, as is the case in most tokamaks. These measurements can be used in the future to inform inversion methods of phase contrast imaging (PCI) measurements. This result was confirmed with both a fixed frequency reflectometer and calibrated data from a multi-frequency comb reflectometer, and this method was applied successfully to a series of discharges. The full width at half maximum of the turbulence layer near the edge of the plasma was found to be only 1.5-3 cm on a series of LHD discharges, less than 5% of the normalized minor radius.

14.
Rev Sci Instrum ; 87(11): 11E105, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910614

RESUMO

The upgraded millimeter-wave interferometer with the frequency of 70 GHz is installed on a large-scaled negative ion source. Measurable line-averaged electron density is from 2 × 1015 to 3 × 1018 m-3 in front of the plasma grid. Several improvements such as the change to shorter wavelength probing with low noise, the installation of special ordered horn antenna, the signal modulation for a high accuracy digital phase detection, the insertion of insulator, and so on, are carried out for the measurement during the beam extraction by applying high voltage. The line-averaged electron density is successfully measured and it is found that it increases linearly with the arc power and drops suddenly at the beam extraction.

15.
Sci Rep ; 6: 36217, 2016 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-27796370

RESUMO

An abrupt onset of the new tongue-shaped deformation of magnetic surface in magnetized plasmas, which was conjectured in since the 1960s but has not been observed, is experimentally identified just before an abrupt onset of a large-scale collapse event. Two novel properties of the event are identified. First, the transition of symmetry of perturbation (rather than a growth of linearly unstable MHD modes) was found to be a key for the onset of abrupt collapse, i.e., the transition of symmetry gives a new route to the collapse from stable state. Second, as a phase-space response of ions, the distortion from Maxwell-Boltzmann distribution of epithermal ions was observed for the first time.

16.
Rev Sci Instrum ; 83(10): 10E322, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126980

RESUMO

In order to measure the poloidal rotation velocity, a Doppler reflectometer has been developed in Large Helical Device (LHD). A remotely controlled antenna tilting system has been installed in an LHD vacuum vessel. A synthesizer is used as the source, and the operation microwave frequency ranges are ka-band and V-band. In LHD last experimental campaign we obtained the Doppler shifted signal, which was consistent with CXRS measurements.

17.
Phys Rev Lett ; 107(11): 115001, 2011 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-22026678

RESUMO

This Letter presents the discovery of macroscale electron temperature fluctuations with a long radial correlation length comparable to the plasma minor radius in a toroidal plasma. Their spatiotemporal structure is characterized by a low frequency of ∼1-3 kHz, ballistic radial propagation, a poloidal or toroidal mode number of m/n=1/1 (or 2/1), and an amplitude of ∼2% at maximum. Nonlinear coupling between the long-range fluctuations and the microscopic fluctuations is identified. A change of the amplitude of the long-range fluctuation is transmitted across the plasma radius at the velocity which is of the order of the drift velocity.

18.
Rev Sci Instrum ; 81(10): 10D906, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21033938

RESUMO

In order to measure the internal structure of density fluctuations using a microwave reflectometer, the broadband frequency tunable system, which has the ability of fast and stable hopping operation, has been improved in the Large Helical Device. Simultaneous multipoint measurement is the key issue of this development. For accurate phase measurement, the system utilizes a single sideband modulation technique. Currently, a dual channel heterodyne frequency hopping reflectometer system has been constructed and applied to the Alfvén eigenmode measurements.

19.
Phys Rev Lett ; 105(14): 145003, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21230839

RESUMO

Reversed-shear Alfvén eigenmodes were observed for the first time in a helical plasma having negative q0'' (the curvature of the safety factor q at the zero shear layer). The frequency is swept downward and upward sequentially via the time variation in the maximum of q. The eigenmodes calculated by ideal MHD theory are consistent with the experimental data. The frequency sweeping is mainly determined by the effects of energetic ions and the bulk pressure gradient. Coupling of reversed-shear Alfvén eigenmodes with energetic ion driven geodesic acoustic modes generates a multitude of frequency-sweeping modes.

20.
Rev Sci Instrum ; 79(10): 10E702, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044520

RESUMO

Two-dimensional phase contrast imaging (2D) installed on the large helical device (LHD) is a unique diagnostic for local turbulence measurements. A 10.6 microm infrared CO(2) laser and 6x8 channel HgCdTe 2D detector are used. The length of the scattering volume is larger than plasma size. However, the asymmetry of turbulence structure with respect to the magnetic field and magnetic shear make local turbulence measurements possible. From a 2D image of the integrated fluctuations, the spatial cross-correlation function was estimated using time domain correlation analysis, then, the integrated 2D k-spectrum is obtained using maximum entropy method. The 2D k-spectrum is converted from Cartesian coordinates to cylindrical coordinates. Finally, the angle in cylindrical coordinate is converted to flux surface labels. The fluctuation profile over almost the entire plasma diameter can be obtained at a single moment. The measurable k-region can be varied by adjusting the detection optics. Presently, k=0.1-1.0 mm(-1) can be measured which is expected region of ion temperature gradient modes and trapped electron mode in LHD. The spatial resolution is 10%-50% of the minor radius.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...