Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
2.
Med Dosim ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38431501

RESUMO

Single-fraction stereotactic radiosurgery (SRS) or fractionated SRS (FSRS) are well established strategies for patients with limited brain metastases. A broad spectrum of modern dedicated platforms are currently available for delivering intracranial SRS/FSRS; however, SRS/FSRS delivered using traditional CT-based platforms relies on the need for diagnostic MR images to be coregistered to planning CT scans for target volume delineation. Additionally, the on-board image guidance on traditional platforms yields limited inter-fraction and intra-fraction real-time visualization of the tumor at the time of treatment delivery. MR Linacs are capable of obtaining treatment planning MR and on-table MR sequences to enable visualization of the targets and organs-at-risk and may subsequently help identify anatomical changes prior to treatment that may invoke the need for on table treatment adaptation. Recently, an MR-guided intracranial package (MRIdian A3i BrainTxTM) was released for intracranial treatment with the ability to perform high-resolution MR sequences using a dedicated brain coil and cranial immobilization system. The objective of this report is to provide, through the experience of our first patient treated, a comprehensive overview of the clinical application of our institutional program for FSRS adaptive delivery using MRIdian's A3i BrainTx system-highlights include reviewing the imaging sequence selection, workflow demonstration, and details in its delivery feasibility in clinical practice, and dosimetric outcomes.

3.
Front Oncol ; 14: 1331266, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469241

RESUMO

Background and purpose: Implementing any radiopharmaceutical therapy (RPT) program requires a comprehensive review of system readiness, appropriate workflows, and training to ensure safe and efficient treatment delivery. A quantitative assessment of the dose delivered to targets and organs at risk (OAR) using RPT is possible by correlating the absorbed doses with the delivered radioactivity. Integrating dosimetry into an established RPT program demands a thorough analysis of the necessary components and system fine-tuning. This study aims to report an optimized workflow for molecular radiation therapy using 177Lu with a primary focus on integrating patient-specific dosimetry into an established radiopharmaceutical program in a radiation oncology setting. Materials and methods: We comprehensively reviewed using the Plan-Do-Check-Act (PDCA) cycle, including efficacy and accuracy of delivery and all aspects of radiation safety of the RPT program. The GE Discovery SPECT/CT 670DR™ system was calibrated per MIM protocol for dose calculation on MIM SurePlan™ MRT software. Jaszcak Phantom with 15-20 mCi of 177Lu DOTATATE with 2.5 µM EDTA solution was used, with the main energy window defined as 208 keV ±10% (187.6 to 229.2 keV); the upper scatter energy window was set to 240 keV ±5% (228 to 252 keV), while the lower scatter energy window was 177.8 keV ±5% (168.9 to 186.7 keV). Volumetric quality control tests and adjustments were performed to ensure the correct alignment of the table, NM, and CT gantry on SPECT/CT. A comprehensive end-to-end (E2E) test was performed to ensure workflow, functionality, and quantitative dose accuracy. Results: Workflow improvements and checklists are presented after systematically analyzing over 400 administrations of 177Lu-based RPT. Injected activity to each sphere in the NEMA Phantom scan was quantified, and the MIM Sureplan MRT reconstruction images calculated activities within ±12% of the injected activity. Image alignment tests on the SPECT/CT showed a discrepancy of more than the maximum tolerance of 2.2 mm on any individual axis. As a result of servicing the machine and updating the VQC and COR corrections, the hybrid imaging system was adjusted to achieve an accuracy of <1 mm in all directions. Conclusion: Workflows and checklists, after analysis of system readiness and adequate training for staff and patients, are presented. Hardware and software components for patient-specific dosimetry are presented with a focus on hybrid image registration and correcting any errors that affect dosimetric quantification calculation. Moreover, this manuscript briefly overviews the necessary quality assurance requirements for converting diagnostic images into dosimetry measurement tools and integrating dosimetry for RPT based on 177Lu.

4.
Tomography ; 10(1): 169-180, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38250959

RESUMO

Radiotherapy for ultracentral lung tumors represents a treatment challenge, considering the high rates of high-grade treatment-related toxicities with stereotactic body radiation therapy (SBRT) or hypofractionated schedules. Accelerated hypofractionated magnetic resonance-guided adaptive radiation therapy (MRgART) emerged as a potential game-changer for tumors in these challenging locations, in close proximity to central organs at risk, such as the trachea, proximal bronchial tree, and esophagus. In this series, 13 consecutive patients, predominantly male (n = 9), with a median age of 71 (range (R): 46-85), underwent 195 MRgART fractions (all 60 Gy in 15 fractions) to metastatic (n = 12) or primary ultra-central lung tumors (n = 1). The median gross tumor volumes (GTVs) and planning target volumes (PTVs) were 20.72 cc (R: 0.54-121.65 cc) and 61.53 cc (R: 3.87-211.81 cc), respectively. The median beam-on time per fraction was 14 min. Adapted treatment plans were generated for all fractions, and indications included GTV/PTV undercoverage, OARs exceeding tolerance doses, or both indications in 46%, 18%, and 36% of fractions, respectively. Eight patients received concurrent systemic therapies, including immunotherapy (four), chemotherapy (two), and targeted therapy (two). The crude in-field loco-regional control rate was 92.3%. No CTCAE grade 3+ toxicities were observed. Our results offer promising insights, suggesting that MRgART has the potential to mitigate toxicities, enhance treatment precision, and improve overall patient care in the context of ultracentral lung tumors.


Assuntos
Neoplasias Pulmonares , Planejamento da Radioterapia Assistida por Computador , Humanos , Imageamento por Ressonância Magnética , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , Espectroscopia de Ressonância Magnética
5.
Int J Radiat Oncol Biol Phys ; 118(2): 512-524, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37793574

RESUMO

PURPOSE: This is the first reporting of the MRIdian A3iTM intracranial package (BrainTxTM) and benchmarks the end-to-end localization and dosimetric accuracy for commissioning an magnetic resonace (MR)-guided stereotactic radiosurgery program. We characterized the localization accuracy between MR and radiation (RT) isocenter through an end-to-end hidden target test, relative dose profile intercomparison, and absolute dose validation. METHODS AND MATERIALS: BrainTx consists of a dedicated head coil, integrated mask immobilization system, and high-resolution MR sequences. Coil and baseplate attenuation was quantified. An in-house phantom (Cranial phantOm foR magNetic rEsonance Localization of a stereotactIc radiosUrgery doSimeter, CORNELIUS) was developed from a mannequin head filled with silicone gel, film, and MR BB with pinprick. A hidden target test evaluated MR-RT localization of the 1×1×1 mm3 TrueFISP MR and relative dose accuracy in film for a 1 cm diameter (International Electrotechnical Commission (IEC)-X/IEC-Y) and 1.5 cm diameter (IEC-Y/IEC-Z) spherical target. Two clinical cases (irregular-shaped target and target abutting brainstem) were mapped to the CORNELIUS phantom for feasibility assessment. A 2-dimensional (2D)-gamma compared calculated and measured dose for spherical and clinical targets with 1 mm/1% and 2 mm/2% criteria, respectively. A small-field chamber (A26MR) measured end-to-end absolute dose for a 1 cm diameter target. RESULTS: Coil and baseplate attenuation were 0.7% and 2.7%, respectively. The displacement of MR to RT localization as defined through the pinprick was 0.49 mm (IEC-X), 0.27 mm (IEC-Y), and 0.51 mm (IEC-Z) (root mean square 0.76 mm). The reproducibility across IEC-Y demonstrated high fidelity (<0.02 mm). Gamma pass rates were 97.1% and 95.4% for 1 cm and 1.5 cm targets, respectively. Dose profiles for an irregular-shaped target and abutting organ-at-risk-target demonstrated pass rates of 99.0% and 92.9%, respectively. The absolute end-to-end dose difference was <1%. CONCLUSIONS: All localization and dosimetric evaluation demonstrated submillimeter accuracy, per the TG-142, TG-101, MPPG 9.a. criteria for SRS/SRT systems, indicating acceptable delivery capabilities with a 1 mm setup margin.


Assuntos
Radiocirurgia , Humanos , Radiocirurgia/métodos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Aceleradores de Partículas , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Espectroscopia de Ressonância Magnética
6.
Brachytherapy ; 22(6): 872-881, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37722990

RESUMO

PURPOSE: This study evaluates the outcomes of recurrent brain metastasis treated with resection and brachytherapy using a novel Cesium-131 carrier, termed surgically targeted radiation therapy (STaRT), and compares them to the first course of external beam radiotherapy (EBRT). METHODS: Consecutive patients who underwent STaRT between August 2020 and June 2022 were included. All patients underwent maximal safe resection with pathologic confirmation of viable disease prior to STaRT to 60 Gy to a 5-mm depth from the surface of the resection cavity. Complications were assessed using CTCAE version 5.0. RESULTS: Ten patients with 12 recurrent brain metastases after EBRT (median 15.5 months, range: 4.9-44.7) met the inclusion criteria. The median BED10Gy90% and 95% were 132.2 Gy (113.9-265.1 Gy) and 116.0 Gy (96.8-250.6 Gy), respectively. The median maximum point dose BED10Gy for the target was 1076.0 Gy (range: 120.7-1478.3 Gy). The 6-month and 1-year local control rates were 66.7% and 33.3% for the prior EBRT course; these rates were 100% and 100% for STaRT, respectively (p < 0.001). At a median follow-up of 14.5 months, there was one instance of grade two radiation necrosis. Surgery-attributed complications were observed in two patients including pseudomeningocele and minor headache. CONCLUSIONS: STaRT with Cs-131 presents an alternative approach for operable recurrent brain metastases and was associated with superior local control than the first course of EBRT in this series. Our initial clinical experience shows that STaRT is associated with a high local control rate, modest surgical complication rate, and low radiation necrosis risk in the reirradiation setting.


Assuntos
Braquiterapia , Neoplasias Encefálicas , Humanos , Radioisótopos de Césio/uso terapêutico , Braquiterapia/métodos , Neoplasias Encefálicas/radioterapia , Necrose/etiologia
7.
J Appl Clin Med Phys ; 24(11): e14088, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37415385

RESUMO

PURPOSE: The purpose of this study is to investigate inter-planner plan quality variability using a manual forward planning (MFP)- or fast inverse planning (FIP, Lightning)-approach for single brain lesions treated with the Gamma Knife® (GK) Icon™. METHODS: Thirty patients who were previously treated with GK stereotactic radiosurgery or radiotherapy were selected and divided into three groups (post-operative resection cavity, intact brain metastasis, and vestibular schwannoma [10 patients per group]). Clinical plans for the 30 patients were generated by multiple planners using FIP only (1), a combination of FIP and MFP (12), and MFP only (17). Three planners (Senior, Junior, and Novice) with varying experience levels re-planned the 30 patients using MFP and FIP (two plans per patient) with planning time limit of 60 min. Statistical analysis was performed to compare plan quality metrics (Paddick conformity index, gradient index, number of shots, prescription isodose line, target coverage, beam-on-time (BOT), and organs-at-risk doses) of MFP or FIP plans among three planners and to compare plan quality metrics between each planner's MFP/FIP plans and clinical plans. Variability in FIP parameter settings (BOT, low dose, and target max dose) and in planning time among the planners was also evaluated. RESULTS: Variations in plan quality metrics of FIP plans among three planners were smaller than those of MFP plans for all three groups. Junior's MFP plans were the most comparable to the clinical plans, whereas Senior's and Novice's MFP plans were superior and inferior, respectively. All three planners' FIP plans were comparable or superior to the clinical plans. Differences in FIP parameter settings among the planners were observed. Planning time was shorter and variations in planning time among the planners were smaller for FIP plans in all three groups. CONCLUSIONS: The FIP approach is less planner dependent and more time-honored than the MFP approach.


Assuntos
Neoplasias Encefálicas , Raio , Radiocirurgia , Humanos , Planejamento da Radioterapia Assistida por Computador , Dosagem Radioterapêutica , Neoplasias Encefálicas/secundário , Encéfalo
8.
Med Dosim ; 48(4): 238-244, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37330328

RESUMO

Given the positive results from recent randomized controlled trials in patients with oligometastatic, oligoprogressive, or oligoresidual disease, the role of radiotherapy has expanded in patients with metastatic non-small cell lung cancer (NSCLC). While small metastatic lesions are commonly treated with stereotactic body radiotherapy (SBRT), treatment of the primary tumor and involved regional lymph nodes may require prolonged fractionation schedules to ensure safety especially when treating larger volumes in proximity to critical organs-at-risk (OARs). We have developed an institutional MR-guided adaptive radiotherapy (MRgRT) workflow for these patients. We present a 71-year-old patient with stage IV NSCLC with oligoprogression of the primary tumor and associated regional lymph nodes in which MR-guided, online adaptive radiotherapy was performed, prescribing 60 Gy in 15 fractions. We describe our workflow, dosimetric constraints, and daily dosimetric comparisons for the critical OARs (esophagus, trachea, and proximal bronchial tree [PBT] maximum doses [D0.03cc]), in comparison to the original treatment plan recalculated on the anatomy of the day (i.e., predicted doses). During MRgRT, few fractions met the original dosimetric objectives: 6.6% for esophagus, 6.6% for PBT, and 6.6% for trachea. Online adaptive radiotherapy reduced the cumulative doses to the structures by 11.34%, 4.2%, and 5.62% when comparing predicted plan summations to the final delivered summation. Therefore, this case study presets a workflow and treatment paradigm for accelerated hypofractionated MRgRT due to the significant variations in daily dose to the central thoracic OARs to reduce treatment-related toxicity associated with radiotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Radiocirurgia , Radioterapia Guiada por Imagem , Humanos , Idoso , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patologia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Radiocirurgia/métodos , Espectroscopia de Ressonância Magnética
9.
J Appl Clin Med Phys ; 24(6): e13936, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36855958

RESUMO

OBJECTIVES: The objective of this study is to evaluate the user-defined optimization settings in the Fast Inverse Planning (FIP) optimizer in Leksell GammaPlan® and determine the parameters that result in the best stereotactic radiosurgery (SRS) plan quality for brain metastases, benign tumors, and arteriovenous malformations (AVMs). METHODS: Thirty patients with metastases and 30 with benign lesions-vestibular schwannoma, AVMs, pituitary adenoma, and meningioma-treated with SRS were evaluated. Each target was planned by varying the low dose (LD) and beam-on-time (BOT) penalties in increments of 0.1, from 0 to 1. The following plan quality metrics were recorded for each plan: Paddick conformity index (PCI), gradient index (GI), BOT, and maximum organ-at-risk (OAR) doses. A novel objective score matrix was calculated for each target using a linearly weighted combination of the aforementioned metrics. A histogram of optimal solutions containing the five best scores was extracted. RESULTS: A total of 7260 plans were analyzed with 121 plans per patient for the range of LD/BOT penalties. The ranges of PCI, GI, and BOT across all metastatic lesions were 0.58-0.97, 2.1-3.8, and 8.8-238 min, respectively, and were 0.13-0.97, 2.1-3.8, and 8.8-238 min, respectively, for benign lesions. The objective score matrix showed unique optimal solutions for metastatic lesions and benign lesions. Additionally, the plan metrics of the optimal solutions were significantly improved compared to the clinical plans for metastatic lesions with equivalent metrics for all other cases. CONCLUSION: In this study, FIP optimizer was evaluated to determine the optimal solution space to maximize PCI and minimize GI, BOT and OAR doses simultaneously for single metastatic/benign/non-neoplastic targets. The optimal solution chart was determined using a novel objective score which provides novice and expert planners a roadmap to generate the most optimal plans efficiently using FIP.


Assuntos
Malformações Arteriovenosas , Neoplasias Encefálicas , Raio , Radiocirurgia , Humanos , Neoplasias Encefálicas/secundário , Dosagem Radioterapêutica , Malformações Arteriovenosas/cirurgia , Planejamento da Radioterapia Assistida por Computador
10.
Med Dosim ; 48(3): 127-133, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36966049

RESUMO

For patients with newly diagnosed glioblastoma, the current standard-of-care includes maximal safe resection, followed by concurrent chemoradiotherapy and adjuvant temozolomide, with tumor treating fields. Traditionally, diagnostic imaging is performed pre- and post-resection, without additional dedicated longitudinal imaging to evaluate tumor volumes or other treatment-related changes. However, the recent introduction of MR-guided radiotherapy using the ViewRay MRIdian A3i system includes a dedicated BrainTx package to facilitate the treatment of intracranial tumors and provides daily MR images. We present the first reported case of a glioblastoma imaged and treated using this workflow. In this case, a 67-year-old woman underwent adjuvant chemoradiotherapy after gross total resection of a left frontal glioblastoma. The radiotherapy treatment plan consisted of a traditional two-phase design (46 Gy followed by a sequential boost to a total dose of 60 Gy at 2 Gy/fraction). The treatment planning process, institutional workflow, treatment imaging, treatment timelines, and target volume changes visualized during treatment are presented. This case example using our institutional A3i system workflow successfully allows for imaging and treatment of primary brain tumors and has the potential for margin reduction, detection of early disease progression, or to detect the need for dose adaptation due to interfraction tumor volume changes.

11.
Cancers (Basel) ; 15(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36765738

RESUMO

We evaluated the effect of lesion number and volume for brain metastasis treated with SRS using GammaKnife® ICON™ (GK) and CyberKnife® M6™ (CK). Four sets of lesion sizes (<5 mm, 5-10 mm, >10-15 mm, and >15 mm) were contoured and prescribed a dose of 20 Gy/1 fraction. The number of lesions was increased until a threshold mean brain dose of 8 Gy was reached; then individually optimized to achieve maximum conformity. Across GK plans, mean brain dose was linearly proportional to the number of lesions and total GTV for all sizes. The numbers of lesions needed to reach this threshold for GK were 177, 57, 29, and 10 for each size group, respectively; corresponding total GTVs were 3.62 cc, 20.37 cc, 30.25 cc, and 57.96 cc, respectively. For CK, the threshold numbers of lesions were 135, 35, 18, and 8, with corresponding total GTVs of 2.32 cc, 12.09 cc, 18.24 cc, and 41.52 cc respectively. Mean brain dose increased linearly with number of lesions and total GTV while V8 Gy, V10 Gy, and V12 Gy showed quadratic correlations to the number of lesions and total GTV. Modern dedicated intracranial SRS systems allow for treatment of numerous brain metastases especially for ≤10 mm; clinical evidence to support this practice is critical to expansion in the clinic.

12.
J Appl Clin Med Phys ; 24(6): e13926, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36800309

RESUMO

PURPOSE: This article describes our experience in implementation of superficial radiation therapy (SRT) using SRT-100 Vision™ for non-melanoma skin cancer. METHODS: Following the American Association of Physicists in Medicine Task Group-61 protocol, absolute output (absorbed dose to water at surface (cGy/min)) was measured for three energies (50, 70, and 100 kV) and for six applicators (1.5-5.0 cm in diameter). Percent depth dose (PDD) and profiles were also measured. Timer testing and ultrasound testing were performed. A treatment time calculation worksheet was created. Quality assurance (QA) of SRT-100 Vision was implemented. After treatment workflow for our clinic was developed, end-to-end (E2E) testing was performed using a Rando phantom. Considerations for treatment using SRT-100 Vision were made. RESULTS: Absolute output (cGy/min) decreases as energy increases and applicator size decreases. Due to scatter from the applicator, PDD at depths ≤5 mm does not follow conventional trends but PDD at depths ≥15 mm increases with increasing applicator size. Profiles for the 5 cm applicator do not have strong dependence on depth except profiles at 5 mm for 50 kV. Timer/end errors are negligible for all three energies. Ultrasound images confirm allowed field of view and depth as well as no image artifacts and spatial integrity. Daily, monthly and annual QA of SRT-100 Vision implemented in our clinic is listed in a table format. E2E testing results (<1%) demonstrate the functionality and performance of our treatment workflow. Our considerations for SRT treatment include patient, applicator size and energy selections, patient setup, and shields. CONCLUSIONS: This article is expected to serve as guidance for Radiation Oncology and/or Dermatology clinics aspiring to initiate an SRT program in their clinics.


Assuntos
Radioterapia (Especialidade) , Neoplasias Cutâneas , Humanos , Dosagem Radioterapêutica , Imagens de Fantasmas , Neoplasias Cutâneas/radioterapia , Radiometria/métodos
13.
Cureus ; 14(8): e28143, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36148186

RESUMO

Total body irradiation (TBI) is used with chemotherapy to induce immunosuppression for hematopoietic cell transplantation and is often administered using lead blocks to minimize lung dose in adults and children. This technique is challenging in infants and young children. A 13-month-old female with acute lymphoblastic leukemia (ALL) was treated with fractionated TBI to a dose of 12 Gy in eight fractions delivered twice daily. Multiple TBI techniques for delivering treatment were considered. Ultimately, treatment using helical tomotherapy was selected in order to spare and accurately quantify the dose to the lung, meet lung dose constraints, and ensure adequate TBI dose coverage. With anesthesia, this technique provided a comfortable and reproducible set-up for the young child. The treatment plan was delivered with intensity-modulated radiotherapy, where 96.4% of the target volume received a prescription dose with a total beam-on time of 16.8 minutes. The mean lung dose was 7.7 Gy for a total lung volume of 245cc. This report describes the challenges faced during the treatment planning and delivery, and how they were resolved.

14.
Cancers (Basel) ; 14(14)2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35884453

RESUMO

We compared the clinical outcomes of BM treated with mask immobilization with zero-SM (i.e., zero-PTV) to standard zero-SM frame immobilization SRS. Consecutive patients with BM, 0.5−2.0 cm in maximal diameter, treated with single-fraction SRS (22−24 Gy) during March 2019−February 2021 were included. Univariable and multivariable analysis were performed using the Kaplan−Meier method and Cox proportional hazards regression. A total of 150 patients with 453 BM met inclusion criteria. A total of 129 (28.5%) lesions were treated with a zero-SM mask immobilization and 324 (71.5%) with zero-SM frame immobilization. Frame immobilization treatments were associated with a higher proportion of gastrointestinal and fewer breast-cancer metastases (p = 0.024), and a higher number of treated lesions per SRS course (median 7 vs. 3; p < 0.001). With a median follow up of 15 months, there was no difference in FFLF between the mask and frame immobilization groups on univariable (p = 0.29) or multivariable analysis (p = 0.518). Actuarial FFLF at 1 year was 90.5% for mask and 92% for frame immobilization (p = 0.272). Radiation necrosis rates at 1 year were 12.5% for mask and 4.1% for frame immobilization (p = 0.502). For BM 0.5−2.0 cm in maximal diameter treated with single-fraction SRS using 22−24 Gy, mask immobilization with zero SM produces comparable clinical outcomes to frame immobilization. The initial findings support omitting a SM when using mask immobilization with this treatment approach on a Gamma Knife® Icon™.

15.
Radiother Oncol ; 173: 84-92, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35662657

RESUMO

BACKGROUND: Stereotactic radiosurgery (SRS) is increasingly used for brain metastases (BM) patients, but distant intracranial failure (DIF) remains the principal disadvantage of this focal therapeutic approach. The objective of this study was to determine if dedicated SRS imaging would improve lesion detection and reduce DIF. METHODS: Between 02/2020 and 01/2021, SRS patients at a tertiary care institution underwent dedicated treatment planning MRIs of the brain including MPRAGE and SPACE post-contrast sequences. DIF was calculated using the Kaplan-Meier method; comparisons were made to a historical consecutive cohort treated using MPRAGE alone (02/2019-01/2020). RESULTS: 134 patients underwent 171 SRS courses for 821 BM imaged with both MPRAGE and SPACE (primary cohort). MPRAGE sequence evaluation alone detected 679 lesions. With neuroradiologists evaluating SPACE and MPRAGE, an additional 108 lesions were identified (p < 0.001). Upon multidisciplinary review, 34 additional lesions were identified. Compared to the historical cohort (103 patients, 135 SRS courses, 479 BM), the primary cohort had improved median time to DIF (13.5 vs. 5.1 months, p = 0.004). The benefit was even more pronounced for patients treated for their first SRS course (18.4 vs. 6.3 months, p = 0.001). SRS using MPRAGE and SPACE was associated with a 60% reduction in risk of DIF compared to the historical cohort (HR: 0.40; 95% CI: 0.28-0.57, p < 0.001). CONCLUSIONS: Among BM patients treated with SRS, a treatment planning SPACE sequence in addition to MPRAGE substantially improved lesion detection and was associated with a statistically significant and clinically meaningful prolongation in time to DIF, especially for patients undergoing their first SRS course.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Humanos , Imageamento por Ressonância Magnética/métodos , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/etiologia , Recidiva Local de Neoplasia/prevenção & controle , Radiocirurgia/métodos , Estudos Retrospectivos
16.
Cancers (Basel) ; 14(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35740612

RESUMO

PURPOSE: The objective was to describe PRDR outcomes and report EQD2 OAR toxicity thresholds. METHODS: Eighteen patients with recurrent primary CNS tumors treated with PRDR at a single institution between April 2017 and September 2021 were evaluated. The radiotherapy details, cumulative OAR doses, progression-free survival (PFS), overall survival (OS), and toxicities were collected. RESULTS: The median PRDR dose was 45 Gy (range: 36-59.4 Gy); the median cumulative EQD2 prescription dose was 102.7 Gy (range: 93.8-120.4 Gy). The median cumulative EQD2 D0.03cc for the brain was 111.4 Gy (range: 82.4-175.2 Gy). Symptomatic radiation necrosis occurred in three patients, for which the median EQD2 brain D0.03cc was 115.9 Gy (110.4-156.7 Gy). The median PFS and OS after PRDR were 6.3 months (95%CI: 0.9-11.6 months) and 8.6 months (95%CI: 4.9-12.3 months), respectively. The systematic review identified five peer-reviewed studies with a median cumulative EQD2 prescription dose of 110.3 Gy. At a median follow-up of 8.7 months, the median PFS and OS were 5.7 months (95%CI: 2.1-15.4 months) and 6.7 months (95%CI: 3.2-14.2 months), respectively. CONCLUSION: PRDR re-irradiation is a relatively safe and feasible treatment for recurrent primary CNS tumors. Despite high cumulative dose to OARs, the risk of high-grade, treatment-related toxicity within the first year of follow-up remains acceptable.

17.
Med Dosim ; 47(1): 70-78, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34696931

RESUMO

To compare stereotactic radiosurgery (SRS) plan quality metrics of manual forward planning (MFP) and Elekta Fast Inverse Planning™ (FIP)-based inversely optimized plans for patients treated with Gamma Knife®. Clinically treated, MFP SRS plans for 100 consecutive patients (115 lesions; 67 metastatic and 48 benign) were replanned with the FIP dose optimizer based on a convex linear programming formulation. Comparative plans were generated to match or exceed the following metrics in order of importance: Target Coverage (TC), Paddick Conformity Index (PCI), beam-on time (BOT), and Gradient Index (GI). Plan quality metrics and delivery parameters between MFP and FIP were compared for all lesions and stratified into subgroups for further analysis. Additionally, performance of FIP for multiple punctate (<4 mm) metastatic lesions on a subset of cases was investigated. A Wilcoxon signed-rank test for non-normal distributions was used to assess the statistical differences between the MFP and FIP treatment plans. Overall, 76% (87/115) of FIP plans showed a statistically significant improvement in plan quality compared to MFP plans. As compared to MFP, FIP plans demonstrated an increase in the median PCI by 1.1% (p<0.01), a decrease in GI by 3.7% (p< 0.01), and an increase in median number of shots by 74% (p< 0.01). TC and BOT were not statistically significantly different between MFP and FIP plans (p>0.05). FIP plans showed a statistically significant increase in use of 16 mm (p< 0.01) and blocked shots (p< 0.01), with a corresponding decrease in 4 mm shots (p< 0.01). Use of multiple shots per coordinate was significantly higher in FIP plans (p<0.01). The FIP optimizer failed to generate a clinically acceptable plan in 4/115 (3.5%) lesions despite optimization parameter changes. The mean optimization time for FIP plans was 5.0 min (Range: 1.0 - 10.0 min). In the setting of multiple punctate lesions, PCI for FIP was significantly improved (p<0.01) by changing the default low-dose/BOT penalty optimization setting from a default of 50/50 to 75-85/40. FIP offers a significant reduction in manual effort for SRS treatment planning while achieving comparable plan quality to an expert planner-substantially improving overall planning efficiency. FIP plans employ a non-intuitive increased use of blocked sectors and shot-in-shot technique to achieve high quality plans. Several FIP plans failed to achieve clinically acceptable treatments and warrant further investigation.


Assuntos
Neoplasias Encefálicas , Raio , Radiocirurgia , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
18.
Neurooncol Pract ; 8(6): 674-683, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34777836

RESUMO

BACKGROUND: The objective of this study was to evaluate the impact of the time interval between planning imaging and stereotactic radiosurgery (SRS) delivery on tumor volumes and spatial anatomic displacements of brain metastases (BM). METHODS: Consecutive patients diagnosed with BM treated with SRS over a 3-year period were evaluated. Only patients who underwent an institutionally standardized diagnostic MRI (MRI-1) and a treatment planning MRI (MRI-2) were included. The impact of histology, inter-scan time interval, lesion location, tumor volume, and diameter were evaluated on final lesion diameter, volume, anatomic displacement, and ultimate need for change in management (ie, expanding margins, rescanning). RESULTS: 101 patients (531 lesions) with a median inter-scan time interval of 8 days (range: 1-42 days) met the inclusion criteria. The median percentage increase in BM diameter and volume were 9.5% (IQR: 2.25%-24.0%) and 20% (IQR: 0.7%-66.7%). Overall, 147 lesions (27.7%) in 57 patients (56.4%) required a change in management. There was a statistically significant relationship between initial tumor diameter (cm) and change in management (OR: 2.69, 95% CI: 1.93-3.75; P < .001). Each day between MRI-1 and MRI-2 was associated with a change in management with an OR of 1.05 (95% CI: 1.03-1.07; P < .001). CONCLUSIONS: Changes in tumor diameter, volume, and spatial position occur as a function of time. Planning imaging for SRS is recommended to occur in close temporal proximity to treatment; for those with delays, a larger setup margin may need to be used to ensure tumor coverage and account for positional changes.

19.
J BUON ; 19(4): 1105-10, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25536623

RESUMO

PURPOSE: The beam energy (PDD10: Percent depth dose) of a Tomotherapy Hi-ArtTM machine was varied in a controlled experiment from -1.64 to +1.66%, while keeping the output at 100% and the effect of this on IMRT output, MU chamber ratio (MUR), cone ratio (CR) and Tissue Maximum Ratio (TMR20/10) was studied METHODS: In this study, Injector Current Voltage (VIC) and Pulse Forming Network Voltage (VPFN) were changed in steps such that the PDD10 was varied from golden beam value incrementally between -1.64 to +1.66%. The effect of this on other energy indicators was studied to verify the sensitivity of TMR20/10, MUR, and detector data-based-CR. To quantify the effect of energy variation on Intensity Modulated Radiation Therapy (IMRT) dose, multiple ion-chamber based dose measurements were recorded by irradiating a cylindrical phantom with standard IMRT plans. Dose variation across each commissioned Field width (FW) was tabulated against energy variation. RESULTS: Good agreement between PDD10 and TMR20/10, MUR, CR was observed. CR was more sensitive to energy change than PDD10. More variation was observed across standard IMRT plan with increasing energy. CONCLUSION: CR is more sensitive to energy changes compared to PDD10, and CR with MUR can definitely be used as surrogates for checks on a daily/weekly basis. Variation in output across the 6 standard IMRT plans can vary up to 2.8% for a 1.6% increase in energy. Hence, it is of utmost importance to manage the PDD10 tightly around +0.5% in order to regulate standard IMRT QA agreement to within 1% and patient IMRT QA within ±3%.


Assuntos
Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica
20.
J Clin Oncol ; 31(34): 4343-8, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-24145340

RESUMO

PURPOSE: Local failure rates after radiation therapy (RT) for locally advanced non-small-cell lung cancer (NSCLC) remain high. Consequently, RT dose intensification strategies continue to be explored, including hypofractionation, which allows for RT acceleration that could potentially improve outcomes. The maximum-tolerated dose (MTD) with dose-escalated hypofractionation has not been adequately defined. PATIENTS AND METHODS: Seventy-nine patients with NSCLC were enrolled on a prospective single-institution phase I trial of dose-escalated hypofractionated RT without concurrent chemotherapy. Escalation of dose per fraction was performed according to patients' stratified risk for radiation pneumonitis with total RT doses ranging from 57 to 85.5 Gy in 25 daily fractions over 5 weeks using intensity-modulated radiotherapy. The MTD was defined as the maximum dose with ≤ 20% risk of severe toxicity. RESULTS: No grade 3 pneumonitis was observed and an MTD for acute toxicity was not identified during patient accrual. However, with a longer follow-up period, grade 4 to 5 toxicity occurred in six patients and was correlated with total dose (P = .004). An MTD was identified at 63.25 Gy in 25 fractions. Late grade 4 to 5 toxicities were attributable to damage to central and perihilar structures and correlated with dose to the proximal bronchial tree. CONCLUSION: Although this dose-escalation model limited the rates of clinically significant pneumonitis, dose-limiting toxicity occurred and was dominated by late radiation toxicity involving central and perihilar structures. The identified dose-response for damage to the proximal bronchial tree warrants caution in future dose-intensification protocols, especially when using hypofractionation.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Fracionamento da Dose de Radiação , Neoplasias Pulmonares/radioterapia , Pneumonite por Radiação/etiologia , Radioterapia de Intensidade Modulada/efeitos adversos , Idoso , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Distribuição de Qui-Quadrado , Relação Dose-Resposta à Radiação , Feminino , Humanos , Estimativa de Kaplan-Meier , Modelos Lineares , Modelos Logísticos , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Estudos Prospectivos , Pneumonite por Radiação/mortalidade , Radioterapia de Intensidade Modulada/mortalidade , Medição de Risco , Fatores de Risco , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...