Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Restor Ecol ; 30(8): e13652, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36589387

RESUMO

Restoration of degraded coastal and estuarine habitats owing to human activities is a major global concern. In Puget Sound, Washington, U.S.A., removal of hard armor from beaches and intertidal zones has become a priority for state and local agencies. However, the effectiveness of these shoreline restoration programs for subtidal habitats and fish is unknown. We surveyed six restoration sites in Puget Sound over 2 years to evaluate associations between shoreline restoration and subtidal fish abundance. We measured the abundance of juvenile salmonids and forage fishes along armored, restored, and reference shorelines. Bayesian generalized linear models showed limited support for associations between shoreline restoration and these fishes in the 3-7 years since armor removal. Pacific herring were more abundant at reference shorelines; the shoreline effect for surf smelt varied by survey site. Shoreline restoration was not an important predictor of salmonid abundance; the best models for Chinook and chum salmon included predictors for survey site and eelgrass, respectively. The retention of survey site in several species' top models reveals the influence of the broader landscape context. We also found seasonal variation in abundance for chum salmon and surf smelt. Our results suggest that juvenile forage fish and salmonids in estuaries likely have unique responses to shoreline features, and that the positive effects of armor removal either do not extend into subtidal areas or are not detectable at local scales. To be most effective, coastal restoration programs should consider broader landscape patterns as well as species-specific habitat needs when prioritizing investments.

2.
PLoS One ; 16(5): e0251638, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34043656

RESUMO

Rockfish are an important component of West Coast fisheries and California Current food webs, and recruitment (cohort strength) for rockfish populations has long been characterized as highly variable for most studied populations. Research efforts and fisheries surveys have long sought to provide greater insights on both the environmental drivers, and the fisheries and ecosystem consequences, of this variability. Here, variability in the temporal and spatial abundance and distribution patterns of young-of-the-year (YOY) rockfishes are described based on midwater trawl surveys conducted throughout the coastal waters of California Current between 2001 and 2019. Results confirm that the abundance of winter-spawning rockfish taxa in particular is highly variable over space and time. Although there is considerable spatial coherence in these relative abundance patterns, there are many years in which abundance patterns are very heterogeneous over the scale of the California Current. Results also confirm that the high abundance levels of YOY rockfish observed during the 2014-2016 large marine heatwave were largely coastwide events. Species association patterns of pelagic YOY for over 20 rockfish taxa in space and time are also described. The overall results will help inform future fisheries-independent surveys, and will improve future indices of recruitment strength used to inform stock assessment models and marine ecosystem status reports.


Assuntos
Distribuição Animal , Monitorização de Parâmetros Ecológicos/estatística & dados numéricos , Pesqueiros/estatística & dados numéricos , Perciformes/fisiologia , Estações do Ano , Animais , California , Conservação dos Recursos Naturais/estatística & dados numéricos , Cadeia Alimentar , Análise Espaço-Temporal
3.
PLoS One ; 15(8): e0237996, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32822408

RESUMO

Identifying juvenile habitats is critical for understanding a species' ecology and for focusing spatial fishery management by defining references like essential fish habitat (EFH). Here, we used vector autoregressive spatio-temporal models (VAST) to delineate spatial and temporal patterns in juvenile density for 13 commercially important species of groundfishes off the US west coast. In particular, we identified hotspots with high juvenile density. Three qualitative patterns of distribution and abundance emerged. First, Dover sole Microstomus pacificus, Pacific grenadier Coryphaenoides acrolepis, shortspine thornyhead Sebastolobus alascanus, and splitnose rockfish Sebastes diploproa had distinct, spatially-limited hotspots that were spatially consistent through time. Next, Pacific hake Merluccius productus and darkblotched rockfish Sebastes crameri had distinct, spatially limited hotspots, but the location of these hotspots varied through time. Finally, arrowtooth flounder Atheresthes stomias, English sole Parophrys vetulus, sablefish Anoplopoma fimbria, Pacific grenadier Coryphaenoides acrolepis, lingcod Ophiodon elongatus, longspine thornyhead Sebastolobus altivelis, petrale sole Eopsetta jordani, and Pacific sanddab Citharichthys sordidus had large hotspots that spanned a broad latitudinal range. These habitats represent potential, if not likely, nursery areas, the location of which will inform spatial management.


Assuntos
Ecossistema , Peixes/fisiologia , Animais , California , Peixes/crescimento & desenvolvimento , Linguado/fisiologia , Gadiformes/fisiologia , Perciformes/fisiologia
4.
Oecologia ; 188(4): 1105-1119, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30311056

RESUMO

The recovery of predators has the potential to restore ecosystems and fundamentally alter the services they provide. One iconic example of this is keystone predation by sea otters in the Northeast Pacific. Here, we combine spatial time series of sea otter abundance, canopy kelp area, and benthic invertebrate abundance from Washington State, USA, to examine the shifting consequences of sea otter reintroduction for kelp and kelp forest communities. We leverage the spatial variation in sea otter recovery to understand connections between sea otters and the kelp forest community. Sea otter increases created a pronounced decline in sea otter prey-particularly kelp-grazing sea urchins-and led to an expansion of canopy kelps from the late 1980s until roughly 2000. However, while sea otter and kelp population growth rates were positively correlated prior to 2002, this association disappeared over the last two decades. This disconnect occurred despite surveys showing that sea otter prey have continued to decline. Kelp area trends are decoupled from both sea otter and benthic invertebrate abundance at current densities. Variability in kelp abundance has declined in the most recent 15 years, as it has the synchrony in kelp abundance among sites. Together, these findings suggest that initial nearshore community responses to sea otter population expansion follow predictably from trophic cascade theory, but now, other factors may be as or more important in influencing community dynamics. Thus, the utility of sea otter predation in ecosystem restoration must be considered within the context of complex and shifting environmental conditions.


Assuntos
Kelp , Lontras , Animais , Ecossistema , Cadeia Alimentar , Florestas , Washington
5.
Ecol Evol ; 7(8): 2846-2860, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28428874

RESUMO

Estimating a population's growth rate and year-to-year variance is a key component of population viability analysis (PVA). However, standard PVA methods require time series of counts obtained using consistent survey methods over many years. In addition, it can be difficult to separate observation and process variance, which is critical for PVA. Time-series analysis performed with multivariate autoregressive state-space (MARSS) models is a flexible statistical framework that allows one to address many of these limitations. MARSS models allow one to combine surveys with different gears and across different sites for estimation of PVA parameters, and to implement replication, which reduces the variance-separation problem and maximizes informational input for mean trend estimation. Even data that are fragmented with unknown error levels can be accommodated. We present a practical case study that illustrates MARSS analysis steps: data choice, model set-up, model selection, and parameter estimation. Our case study is an analysis of the long-term trends of rockfish in Puget Sound, Washington, based on citizen science scuba surveys, a fishery-independent trawl survey, and recreational fishery surveys affected by bag-limit reductions. The best-supported models indicated that the recreational and trawl surveys tracked different, temporally independent assemblages that declined at similar rates (an average of -3.8% to -3.9% per year). The scuba survey tracked a separate increasing and temporally independent assemblage (an average of 4.1% per year). Three rockfishes (bocaccio, canary, and yelloweye) are listed in Puget Sound under the US Endangered Species Act (ESA). These species are associated with deep water, which the recreational and trawl surveys sample better than the scuba survey. All three ESA-listed rockfishes declined as a proportion of recreational catch between the 1970s and 2010s, suggesting that they experienced similar or more severe reductions in abundance than the 3.8-3.9% per year declines that were estimated for rockfish populations sampled by the recreational and trawl surveys.

6.
PLoS One ; 8(3): e57918, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23526960

RESUMO

Knowledge of broad-scale global patterns in beta diversity (i.e., variation or turnover in identities of species) for marine systems is in its infancy. We analysed the beta diversity of groundfish communities along the North American Pacific coast, from trawl data spanning 32.57°N to 48.52°N and 51 m to 1200 m depth. Analyses were based on both the Jaccard measure and the probabilistic Raup-Crick measure, which accounts for variation in alpha diversity. Overall, beta diversity decreased with depth, and this effect was strongest at lower latitudes. Superimposed on this trend were peaks in beta diversity at around 400-600 m and also around 1000-1200 m, which may indicate high turnover around the edges of the oxygen minimum zone. Beta diversity was also observed to decrease with latitude, but this effect was only observed in shallower waters (<200 m); latitudinal turnover began to disappear at depths >800 m. At shallower depths (<200 m), peaks in latitudinal turnover were observed at ∼43°N, 39°N, 35°N and 31°N, which corresponded well with several classically observed oceanographic boundaries. Turnover with depth was stronger than latitudinal turnover, and is likely to reflect strong environmental filtering over relatively short distances. Patterns in beta diversity, including latitude-by-depth interactions, should be integrated with other biodiversity measures in ecosystem-based management and conservation of groundfish communities.


Assuntos
Biodiversidade , Peixes/classificação , Animais , Ecossistema , Geografia , Oceano Pacífico , Especificidade da Espécie
7.
Ecology ; 92(9): 1717-22, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21939067

RESUMO

Distance decay is used to describe the (usually exponential) decay in ecological similarity of assemblages between two sites as a function of their distance apart along an environmental gradient. Exponential distance-decay curves are routinely fitted by calculating the ecological similarity between each pair of sites, and fitting a linear regression to the points on a scatter plot of log-similarity vs. distance (x-axis). However, pairs of sites where the assemblages have no species in common pose a problem, because the similarity is zero, and the log transformation cannot be applied. Common fixes to this problem (i.e., either removing or transforming the zero values) are shown to have undesirable consequences and to give widely disparate estimates. A new method is presented as a special case of a generalized dissimilarity model. It is fitted very quickly and easily using existing software, and it does not require removal or transformation of the zero similarity points. Its simplicity makes it convenient for use in conjunction with the resampling methods that are routinely employed to test hypotheses, to obtain standard errors of estimated parameters, or to compare distance-decay curves. A word of caution about standard application of the bootstrap is noted, and modified bootstrap and jackknife alternatives are demonstrated.


Assuntos
Ecossistema , Modelos Biológicos , Interpretação Estatística de Dados , Demografia , Modelos Lineares
8.
PLoS One ; 5(5): e10653, 2010 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-20498727

RESUMO

BACKGROUND: Large-scale patterns or trends in species diversity have long interested ecologists. The classic pattern is for diversity (e.g., species richness) to decrease with increasing latitude. Taxonomic distinctness is a diversity measure based on the relatedness of the species within a sample. Here we examined patterns of taxonomic distinctness in relation to latitude (ca. 32-48 degrees N) and depth (ca. 50-1220 m) for demersal fishes on the continental shelf and slope of the US Pacific coast. METHODOLOGY/PRINCIPAL FINDINGS: Both average taxonomic distinctness (AvTD) and variation in taxonomic distinctness (VarTD) changed with latitude and depth. AvTD was highest at approximately 500 m and lowest at around 200 m bottom depth. Latitudinal trends in AvTD were somewhat weaker and were depth-specific. AvTD increased with latitude on the shelf (50-150 m) but tended to decrease with latitude at deeper depths. Variation in taxonomic distinctness (VarTD) was highest around 300 m. As with AvTD, latitudinal trends in VarTD were depth-specific. On the shelf (50-150 m), VarTD increased with latitude, while in deeper areas the patterns were more complex. Closer inspection of the data showed that the number and distribution of species within the class Chondrichthyes were the primary drivers of the overall patterns seen in AvTD and VarTD, while the relatedness and distribution of species in the order Scorpaeniformes appeared to cause the relatively low observed values of AvTD at around 200 m. CONCLUSIONS/SIGNIFICANCE: These trends contrast to some extent the patterns seen in earlier studies for species richness and evenness in demersal fishes along this coast and add to our understanding of diversity of the demersal fishes of the California Current.


Assuntos
Biodiversidade , Peixes/classificação , Peixes/genética , Filogenia , Água do Mar , Movimentos da Água , Animais , California , Geografia
9.
Ecol Appl ; 16(4): 1502-15, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16937814

RESUMO

Fish body size, a key driver of many aspects of fish population biology and ecology, is affected by fisheries that deplete the largest individuals. Rockfish (genus Sebastes) are a diverse group that has been heavily fished on the U.S. West Coast in recent decades. We examined trawl survey data from 1980 to 2001 to determine spatial and temporal trends in body size and density of 16 shelf rockfish species, including six that are considered overfished. Mean individual mass and maximum observed mass declined in the majority of species in one or more zoogeographic regions between central California and Washington. Density changes were far more variable in time and space, but in all regions, density declines were most often associated with large-bodied rockfish. We next estimated the impact of size and density changes on energy consumption and fecundity in a five-species rockfish assemblage that includes bocaccio (S. paucispinis), a large-bodied, overfished species. Indexes of both consumption and fecundity by the assemblage increased in the southern portion of the study area between 1980 and 2001 but decreased in the northern portion. Allocation of energy and reproductive potential within the assemblage shifted dramatically: relative to bocaccio, total energy consumption and fecundity indexes for the other four species increased by orders of magnitude from 1980 to 2001. These changes in community structure may affect the ability of bocaccio and other large rockfish species to recover from overfishing, especially in light of long-term declines in zooplankton production that may also be affecting rockfish size and production. Addressing these issues may require a regional, multispecies management approach.


Assuntos
Tamanho Corporal/fisiologia , Ecossistema , Metabolismo Energético/fisiologia , Peixes/metabolismo , Animais , Feminino , Oceano Pacífico , Densidade Demográfica , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...