Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 117(3): 602-612, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31327459

RESUMO

Hearing loss is associated with ∼8100 mutations in 152 genes, and within the coding regions of these genes are over 60,000 missense variants. The majority of these variants are classified as "variants of uncertain significance" to reflect our inability to ascribe a phenotypic effect to the observed amino acid change. A promising source of pathogenicity information is biophysical simulation, although input protein structures often contain defects because of limitations in experimental data and/or only distant homology to a template. Here, we combine the polarizable atomic multipole optimized energetics for biomolecular applications force field, many-body optimization theory, and graphical processing unit acceleration to repack all deafness-associated proteins and thereby improve average structure MolProbity score from 2.2 to 1.0. We then used these optimized wild-type models to create over 60,000 structures for missense variants in the Deafness Variation Database, which are being incorporated into the Deafness Variation Database to inform deafness pathogenicity prediction. Finally, this work demonstrates that advanced polarizable atomic multipole force fields are efficient enough to repack the entire human proteome.


Assuntos
Algoritmos , Perda Auditiva/genética , Proteínas/química , Fenômenos Biofísicos , Bases de Dados de Proteínas , Humanos , Modelos Moleculares
2.
Am J Med Genet A ; 167A(12): 2957-65, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26416264

RESUMO

Deafness is the most frequent sensory disorder. With over 90 genes and 110 loci causally implicated in non-syndromic hearing loss, it is phenotypically and genetically heterogeneous. Here, we investigate the genetic etiology of deafness in four families of Iranian origin segregating autosomal recessive non-syndromic hearing loss (ARNSHL). We used a combination of linkage analysis, homozygosity mapping, and a targeted genomic enrichment platform to simultaneously screen 90 known deafness-causing genes for pathogenic variants. Variant segregation was confirmed by Sanger sequencing. Linkage analysis and homozygosity mapping showed segregation with the DFNB57 locus on chromosome 10 in two families. Targeted genomic enrichment with massively parallel sequencing identified causal variants in PDZD7: a homozygous missense variant (p.Gly103Arg) in one family and compound heterozygosity for missense (p.Met285Arg) and nonsense (p.Tyr500Ter) variants in the second family. Screening of two additional families identified two more variants: (p.Gly228Arg) and (p.Gln526Ter). Variant segregation with the hearing loss phenotype was confirmed in all families by Sanger sequencing. The missense variants are predicted to be deleterious, and the two nonsense mutations produce null alleles. This report is the first to show that mutations in PDZD7 cause ARNSHL, a finding that offers addition insight into the USH2 interactome. We also describe a novel likely disease-causing mutation in CIB2 and illustrate the complexity associated with gene identification in diseases that exhibit large genetic and phenotypic heterogeneity.


Assuntos
Proteínas de Transporte/genética , Surdez/genética , Perda Auditiva/genética , Mutação , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Cromossomos Humanos Par 10 , Feminino , Genes Recessivos , Heterogeneidade Genética , Ligação Genética , Haplótipos , Heterozigoto , Homozigoto , Humanos , Masculino , Modelos Moleculares , Linhagem
3.
Biophys J ; 109(4): 816-26, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26287633

RESUMO

A balance of van der Waals, electrostatic, and hydrophobic forces drive the folding and packing of protein side chains. Although such interactions between residues are often approximated as being pairwise additive, in reality, higher-order many-body contributions that depend on environment drive hydrophobic collapse and cooperative electrostatics. Beginning from dead-end elimination, we derive the first algorithm, to our knowledge, capable of deterministic global repacking of side chains compatible with many-body energy functions. The approach is applied to seven PCNA x-ray crystallographic data sets with resolutions 2.5-3.8 Å (mean 3.0 Å) using an open-source software. While PDB_REDO models average an Rfree value of 29.5% and MOLPROBITY score of 2.71 Å (77th percentile), dead-end elimination with the polarizable AMOEBA force field lowered Rfree by 2.8-26.7% and improved mean MOLPROBITY score to atomic resolution at 1.25 Å (100th percentile). For structural biology applications that depend on side-chain repacking, including x-ray refinement, homology modeling, and protein design, the accuracy limitations of pairwise additivity can now be eliminated via polarizable or quantum mechanical potentials.


Assuntos
Algoritmos , Modelos Químicos , Antígeno Nuclear de Célula em Proliferação/química , Acesso à Informação , Cristalografia por Raios X , Conjuntos de Dados como Assunto , Interações Hidrofóbicas e Hidrofílicas , Mutação , Antígeno Nuclear de Célula em Proliferação/genética , Dobramento de Proteína , Estrutura Secundária de Proteína , Teoria Quântica , Software , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...