Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Entomol ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635291

RESUMO

The cosmopolitan ectoparasite human head louse, Pediculus humanus capitis (De Geer)(Phthiraptera:Pediculidae), affects mostly school-aged children, with infestations reported every year mainly due to louse resistance to pyrethroids. One of the main resistance mechanisms of pyrethroids is the target site insensitivity (kdr), which is caused by single-nucleotide point mutations (SNPs) located in the voltage-sensitive sodium channel gene. In this study, we analyzed individual head lice toxicologically via the description of their susceptibility profile to permethrin and genetically through the genotypification of their kdr alleles as well as nuclear microsatellite loci. Lice were collected from 4 schools in the city of Buenos Aires, Argentina. The resistance ratios varied from 33.3% to 71.4%, with a frequency of the T917I kdr mutation of 87.31% and with 83.6% of the head lice being homozygous resistant to pyrethroids. Microsatellite data indicated that all the louse school populations had genotype proportions that deviated from Hardy-Weinberg expectations, with FIS > 0 reflecting a deficit of heterozygotes. Bottleneck analysis suggested that all louse school populations underwent a recent reduction in population sizes, while 3 of the 4 schools had gene flow values around 1, indicating ongoing gene flow among those schools. Our study suggests that school louse populations in the city of Buenos Aires may form a metapopulation, where each school represents a small population that undergoes extinction and recolonization processes under strong permethrin selection. This is the first multilevel analysis integrating toxicological, kdr-genotyping, and microsatellite data in human louse populations.

2.
Pestic Biochem Physiol ; 201: 105886, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685252

RESUMO

This study evaluates the pediculicidal activity of nanoformulations containing different binary essential oil component mixtures (eugenol:linalool, 1,8 -cineole:linalool, and eugenol:thymol) using immersion bioassays. These have allowed us to evaluate the knockdown time affecting 50% of the individuals (KT50). In addition, the type of interaction between the components in each mixture was established in terms of the combination index (IC). The KT50 values were 6.07; 8.83; 7.17 and 27.23 h for linalool, 1,8 -cineole, eugenol, and thymol, respectively. For the eugenol:linalool mixtures, the efficacy was lower or equal to that obtained for the nanoformulations of the pure compounds, with values of KT50 about 13.33, 8.16 and 6.71 h for mixtures with ratios 3:1, 1:1 and 1:3, respectively. These mixtures present IC > 1, evidencing antagonistic interaction, which is enhanced with eugenol content. In the case of the binary mixtures of 1,8 -cineole: linalool, KT50 values were similar to those obtained for eugenol:linalool mixtures with similar ratios. In this case, IC assumes values close to unity, suggesting additive interactions independently of the mixture composition. On the other side, mixtures of eugenol:thymol with 1:1 and 1:3 ratios showed values of 9.40 and 32.93 h, while the mixture with a 3:1 ratio showed the greatest effectiveness (KT50 of 4.42 h). Eugenol:thymol mixtures show synergistic interaction (IC < 1) for combinations 3:1 and 1:1, while no interaction was observed for 1:3 combination. This indicates that eugenol enhances thymol activity. These results must be considered an important step forward to the development of effective pediculicidal nanoformulations based on botanical compounds.


Assuntos
Monoterpenos Acíclicos , Eucaliptol , Eugenol , Monoterpenos , Monoterpenos/farmacologia , Monoterpenos/química , Animais , Eugenol/farmacologia , Eugenol/química , Eucaliptol/farmacologia , Monoterpenos Acíclicos/farmacologia , Monoterpenos Acíclicos/química , Pediculus/efeitos dos fármacos , Inseticidas/farmacologia , Inseticidas/química , Timol/farmacologia , Timol/química , Micelas , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Nanopartículas/química , Infestações por Piolhos/tratamento farmacológico
3.
PLoS One ; 18(11): e0293409, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37939041

RESUMO

The human louse, Pediculus humanus, is an obligate blood-sucking ectoparasite that has coevolved with humans for millennia. Given the intimate relationship between this parasite and the human host, the study of human lice has the potential to shed light on aspects of human evolution that are difficult to interpret using other biological evidence. In this study, we analyzed the genetic variation in 274 human lice from 25 geographic sites around the world by using nuclear microsatellite loci and female-inherited mitochondrial DNA sequences. Nuclear genetic diversity analysis revealed the presence of two distinct genetic clusters I and II, which are subdivided into subclusters: Ia-Ib and IIa-IIb, respectively. Among these samples, we observed the presence of the two most common louse mitochondrial haplogroups: A and B that were found in both nuclear Clusters I and II. Evidence of nuclear admixture was uncommon (12%) and was predominate in the New World potentially mirroring the history of colonization in the Americas. These findings were supported by novel DIYABC simulations that were built using both host and parasite data to define parameters and models suggesting that admixture between cI and cII was very recent. This pattern could also be the result of a reproductive barrier between these two nuclear genetic clusters. In addition to providing new evolutionary knowledge about this human parasite, our study could guide the development of new analyses in other host-parasite systems.


Assuntos
Infestações por Piolhos , Pediculus , Animais , Humanos , Feminino , Pediculus/genética , Filogenia , Infestações por Piolhos/genética , Infestações por Piolhos/parasitologia , DNA Mitocondrial/genética , Variação Genética
4.
J Med Entomol ; 58(6): 2321-2329, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34106252

RESUMO

Knockdown resistance (kdr) is a common mechanism of insecticide resistance in head lice to the conventionally used pyrethroid pediculosis and can be the result of various amino acid substitutions within the voltage-sensitive sodium channel (VSSC). In this study, 54 sequences from varied specimens were investigated to monitor well-known resistance mutations and probable new mutations. The Pediculus humanus capitis de Geer specimens were collected from 13 provinces in Iran. The specimens were stored in 70% ethanol until DNA extraction and PCR amplification of ~900-bp fragment of VSSC. The sequences were analyzed using different bioinformatics software for the detection of well-known kdr substitutions and additional mutations potentially associated with kdr resistance in head lice. There were six new and an old (haplotype I) kdr haplotypes within the Iranian head louse population. K794E, F815I, and N818D amino acid substitutions were reported for the first time. The P813H mutation was the most prevalent amino acid substitution in eight provinces. Among 53 sequences, 26 (49%) were homozygous susceptible, and 27 (51%) were heterozygotes. Thus, 51% of the head lice collected in Iran harbored only the P813H allele. The exact test for the Hardy-Weinberg (H-W) equilibrium showed that genotype frequencies differed significantly from the expectation in East-Azerbaijan and Tehran provinces. Moreover, these populations had an inbreeding coefficient (Fis) <0, indicating the excess of heterozygotes. This observation suggests that the populations of head lice from Iran are currently under active selective pressure. For the rest of the populations, H-W equilibrium and the expectations were significantly in harmony. The results of the current study highlight molecular techniques in the accurate detection of resistance genotypes before their establishment within the head louse population. Accurate detection of resistant genotypes seems to be helpful in decision-making on lice control programs and resistance monitoring and management.


Assuntos
Resistência a Inseticidas/genética , Inseticidas/farmacologia , Pediculus/efeitos dos fármacos , Animais , Irã (Geográfico) , Pediculus/genética
5.
Int J Dermatol ; 60(3): 272-280, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32767380

RESUMO

Head louse infestations continue to be a concern of public health in most countries, including the most developed ones. The present recommendations are intended to inform and stress the role and impact of the different authorities, institutions, industry, and the public in the control of head lice in order to reduce the prevalence of this parasite. We encourage health authorities to pursue more effective methods to correctly identify such infestations, and evaluate existing and new pediculicides, medical devices, louse repellents, and louse- and nit-removal remedies. Pediculicides and medical devices must have verifiable claims in the instructions for use and should be tested periodically to document current levels of resistance by lice to the active ingredients and to the formulated products. Where the prevalence of lice is claimed to be epidemic, children should be periodically evaluated objectively to document the actual level of prevalence. Continuing education for health providers and the general population promises to correct misinformation regarding the biology, prevention, and management of lice. Parents should regularly inspect their children for head lice and treat as necessary. Health authorities are encouraged to eliminate policies and practices that rely upon school exclusion as a means to reduce incidence and prevalence, e.g., the 'no-nit' policy which lacks scientific justification, and are counterproductive to the health and welfare of children.


Assuntos
Infestações por Piolhos , Pediculus , Dermatoses do Couro Cabeludo , Animais , Criança , Humanos , Infestações por Piolhos/diagnóstico , Infestações por Piolhos/tratamento farmacológico , Infestações por Piolhos/epidemiologia , Prevalência , Saúde Pública , Dermatoses do Couro Cabeludo/diagnóstico , Dermatoses do Couro Cabeludo/epidemiologia , Dermatoses do Couro Cabeludo/prevenção & controle , Instituições Acadêmicas
6.
Parasitol Res ; 119(10): 3305-3313, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32651636

RESUMO

The genetic structure of natural populations offers insight into the complexities of their dynamics, information that can be relevant to vector control strategies. Microsatellites are useful neutral markers to investigate the genetic structure and gene flow in Triatoma infestans, one of the main vectors of Chagas disease in South America. Recently, a heterogeneous pyrethroid-resistant hotspot was found in the Argentine Gran Chaco, characterized by the highest levels of deltamethrin resistance found at the present time. We applied population genetics analyses to microsatellite and village data and search for associations between the genetic variability and the heterogeneous toxicological pattern previously found. We genotyped 10 microsatellite loci in 67 T. infestans from 6 villages with no, low, and high pyrethroid resistance. The most genetically diverse populations were those susceptible or with low values of resistance. In contrast, high-resistance populations had lower herozygosity and some monomorphic loci. A negative association was found between variability and resistant ratios. Global and pairwise FSTs indicated significant differentiation between populations. The only susceptible population was discriminated in all the performed studies. Low-resistance populations were also differentiated by a discriminant analysis of principal components (DAPC) and were composed mostly by the same two genetic clusters according to STRUCTURE Bayesian algorithm. Individuals from the high-resistance populations were overlapped in the DAPC and shared significant proportions of a genetic cluster. These observations suggest that the resistant populations might have a common origin, although more genetic markers and samples are required to test this hypothesis more rigorously.


Assuntos
Insetos Vetores/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Nitrilas/farmacologia , Piretrinas/farmacologia , Triatoma/genética , Animais , Argentina/epidemiologia , Doença de Chagas/epidemiologia , Doença de Chagas/transmissão , Variação Genética , Repetições de Microssatélites/genética
7.
Parasit Vectors ; 13(1): 312, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546206

RESUMO

BACKGROUND: The human head louse, Pediculus humanus capitis, is a cosmopolitan blood-sucking ectoparasite affecting mostly schoolchildren in both developed and developing countries. In Honduras, chemical pediculicides are the first line of treatment, with permethrin as their main active ingredient. Despite the extended use of these products, there is currently no research investigating insecticide resistance in Honduran head lice. In head lice, the most common mechanism is knockdown resistance (kdr), which is the result of two point mutations and the associated amino acid substitutions, T917I and L920F, within the voltage-sensitive sodium channel (VSSC). METHODS: Genomic DNA was extracted from 83 head lice collected in the localities of San Buenaventura and La Hicaca, Honduras. Polymerase chain reaction (PCR) was used to amplify a 332-bp fragment of the VSSC gene that contains a site affected by C/T mutation which results in a T917I amino acid substitution on each human head louse genomic DNA fragments. RESULTS: The C/T non-synonymous mutation which results in the T917I kdr amino acid substitution was detected in both head lice populations at frequencies ranging between 0.45-0.5. Globally, the frequency of this substitution was 0.47. Of these, 5 (6.1%) were homozygous susceptible and 78 (93.9%) were heterozygotes. The kdr-resistant homozygote (RR) was not detected in the studied populations. Thus, 93.9% of the head lice collected in Honduras harbored only one T917I allele. Exact test for the Hardy-Weinberg equilibrium for both localities showed that genotype frequencies differed significantly from expectation. In addition, San Buenaventura and La Hicaca populations had an inbreeding coefficient (Fis) < 0, suggesting an excess of heterozygotes. CONCLUSIONS: To our knowledge, this is the first study showing the presence of the C/T mutation responsible of the T917I kdr allele associated with pyrethroid resistance in P. h. capitis from Honduras. The PCR-restriction fragment length polymorphism (RFLP) employed here has demonstrated to be a reliable, economic, and reproducible assay that can be used to accurately genotype individual head lice for the mutation encoding the resistance-conferring T917I amino acid substitution. This highlights the necessity of proactive resistance management programmes designed to detect pyrethroid mutations before they become established within populations of head lice.


Assuntos
Resistência a Inseticidas/genética , Inseticidas , Pediculus/genética , Piretrinas , Alelos , Substituição de Aminoácidos , Animais , Genoma de Inseto , Genótipo , Honduras , Humanos , Infestações por Piolhos/parasitologia , Mutação , Permetrina , Polimorfismo de Fragmento de Restrição , População Rural , Canais de Sódio/genética
8.
J Med Entomol ; 57(3): 837-844, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-31901169

RESUMO

Chagas disease affects around 6 million people in the world, and in Latin America, it is mainly transmitted by the kissing bug. Chemical control of the vector with pyrethroid insecticides has been the most frequently used tool to reduce the disease incidence. Failures of field control have been detected in areas of the Argentinian Gran Chaco that correlate with high levels of insecticide resistance. Here, we provide evidence of the mechanisms involved in the resistance to insecticides of field populations of T. infestans from General Güemes Department (Chaco Province, Argentina). The biochemical analysis suggests the increase in the activity of the degradative enzymes P450 oxidases and esterases as a minor contributive mechanism in low-resistance populations. The molecular study revealed high frequencies of the kdr L925I mutation at the voltage-gated sodium channel as responsible for the high resistance ratios detected. This knowledge contributes to the generation of comprehensive vector control strategies that reduce the incidence of the disease.


Assuntos
Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Nitrilas/farmacologia , Piretrinas/farmacologia , Triatoma/genética , Alelos , Animais , Argentina , Inativação Metabólica/fisiologia , Proteínas de Insetos/metabolismo , Ninfa/efeitos dos fármacos , Ninfa/enzimologia , Ninfa/genética , Ninfa/crescimento & desenvolvimento , Triatoma/efeitos dos fármacos , Triatoma/enzimologia , Triatoma/crescimento & desenvolvimento
9.
Am J Phys Anthropol ; 152(1): 118-29, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23900879

RESUMO

Anthropological studies suggest that the genetic makeup of human populations in the Americas is the result of diverse processes including the initial colonization of the continent by the first people plus post-1492 European migrations. Because of the recent nature of some of these events, understanding the geographical origin of American human diversity is challenging. However, human parasites have faster evolutionary rates and larger population sizes allowing them to maintain greater levels of genetic diversity than their hosts. Thus, we can use human parasites to provide insights into some aspects of human evolution that may be unclear from direct evidence. In this study, we analyzed mitochondrial DNA (mtDNA) sequences from 450 head lice in the Americas. Haplotypes clustered into two well-supported haplogroups, known as A and B. Haplogroup frequencies differ significantly among North, Central and South America. Within each haplogroup, we found evidence of demographic expansions around 16,000 and 20,000 years ago, which correspond broadly with those estimated for Native Americans. The parallel timing of demographic expansions of human lice and Native Americans plus the contrasting pattern between the distribution of haplogroups A and B through the Americas suggests that human lice can provide additional evidence about the human colonization of the New World.


Assuntos
DNA Mitocondrial/genética , Infestações por Piolhos/parasitologia , Pediculus/classificação , América , Análise de Variância , Animais , Antropologia Física , Ciclo-Oxigenase 1/genética , DNA Mitocondrial/análise , Emigração e Imigração , Evolução Molecular , Genes de Insetos , Variação Genética , Haplótipos , Humanos , Pediculus/genética , Filogenia
10.
J Insect Sci ; 10: 185, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21062140

RESUMO

Infestation with the head louse, Pediculus humanus capitis De Geer (Phthiraptera: Pediculidae), is one of the most common parasitic infestation of humans worldwide. Traditionally, the main treatment for control of head lice is chemical control that is based in a wide variety of neurotoxic synthetic insecticides. The repeated overuse of these products has resulted in the selection of resistant populations of head lice. Thus, plant-derived insecticides, such as the essential oils seem to be good viable alternatives as some have low toxicity to mammals and are biodegradable. We determined the insecticidal activity of 25 essential oils belonging to several botanical families present in Argentina against permethrin-resistant head lice. Significant differences in fumigant activity against head lice were found among the essential oils from the native and exotic plant species. The most effective essential oils were Cinnamomum porphyrium, followed by Aloysia citriodora (chemotype 2) and Myrcianthes pseudomato, with KT(50) values of 1.12, 3.02 and 4.09; respectively. The results indicate that these essential oils are effective and could be incorporated into pediculicide formulations to control head lice infestations once proper formulation and toxicological tests are performed.


Assuntos
Inseticidas/farmacologia , Óleos Voláteis/farmacologia , Ftirápteros/efeitos dos fármacos , Plantas/química , Animais , Argentina , Bioensaio , Cromatografia Gasosa , Cinnamomum , Humanos , Inseticidas/análise , Myrtaceae , Óleos Voláteis/análise , Especificidade da Espécie , Verbenaceae
11.
Parasitol Res ; 106(2): 409-14, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19902249

RESUMO

During the past decades, chemical control against the head louse Pediculus humanus capitis De Geer has been based in the application of products containing permethrin. The repetitive overuse of pediculicides has resulted in the development of high levels of resistance to one or more of these products worldwide. Essential oils obtained from aromatic plants like Eucalyptus are good and safe alternatives due to their low toxicity to mammals and easy biodegradability. In the present study, we reported the chemical composition of Eucalyptus dunnii and Eucalyptus gunni, and the fumigant activity of five Eucalyptus essential oils and their main compounds against permethrin-resistant head lice from Argentina. The most effective essential oils were Eucalyptus sideroxylon, Eucalyptus globulus ssp globulus, and Eucalyptus globulus ssp maidenii, with knockdown time 50% (KT(50)) values of 24.75, 27.73, and 31.39 min. A linear regression analysis between percentage of 1,8-Cineole and KT(50) values of the essential oils showed a significant correlation at a p < 0.01. Since Eucalyptus essential oils showed to be effective against head lice and are classified as safer compounds, they can be employed into pediculicide formulations.


Assuntos
Resistência a Medicamentos , Eucalyptus/química , Inseticidas/farmacologia , Óleos Voláteis/farmacologia , Pediculus/efeitos dos fármacos , Permetrina/farmacologia , Adolescente , Animais , Argentina , Criança , Humanos , Análise de Sobrevida , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...