Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119714, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38555977

RESUMO

The discovery of MICU1 as gatekeeper of mitochondrial calcium (mCa2+) entry has transformed our understanding of mCa2+ flux. Recent studies revealed an additional role of MICU1 as a Ca2+ sensor at MICOS (mitochondrial contact site and cristae organizing system). MICU1's presence at MICOS suggests its involvement in coordinating Ca2+ signaling and mitochondrial ultrastructure. Besides its role in Ca2+ regulation, MICU1 influences cellular signaling pathways including transcription, epigenetic regulation, metabolism, and cell death, thereby affecting human health. Here, we summarize recent findings on MICU1's canonical and noncanonical functions, and its relevance to human health and diseases.

2.
bioRxiv ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37904949

RESUMO

Alzheimer's disease (AD) is characterized by the extracellular deposition of amyloid beta, intracellular neurofibrillary tangles, synaptic dysfunction, and neuronal cell death. These phenotypes correlate with and are linked to elevated neuronal intracellular calcium ( i Ca 2+ ) levels. Recently, our group reported that mitochondrial calcium ( m Ca 2+ ) overload, due to loss of m Ca 2+ efflux capacity, contributes to AD development and progression. We also noted proteomic remodeling of the mitochondrial calcium uniporter channel (mtCU) in sporadic AD brain samples, suggestive of altered m Ca 2+ uptake in AD. Since the mtCU is the primary mechanism for Ca 2+ uptake into the mitochondrial matrix, inhibition of the mtCU has the potential to reduce or prevent m Ca 2+ overload in AD. Here, we report that neuronal-specific loss of mtCU-dependent m Ca 2+ uptake in the 3xTg-AD mouse model of AD reduced Aß and tau-pathology, synaptic dysfunction, and cognitive decline. Knockdown of Mcu in a cellular model of AD significantly decreased matrix Ca 2+ content, oxidative stress, and cell death. These results suggest that inhibition of neuronal m Ca 2+ uptake is a novel therapeutic target to impede AD progression.

3.
bioRxiv ; 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37873405

RESUMO

The balance between mitochondrial calcium (mCa2+) uptake and efflux regulates ATP production, but if perturbed causes energy starvation or mCa2+ overload and cell death. The mitochondrial sodium-calcium exchanger, NCLX, is a critical route of mCa2+ efflux in excitable tissues, such as the heart and brain, and animal models support NCLX as a promising therapeutic target to limit pathogenic mCa2+ overload. However, the mechanisms that regulate NCLX activity remain largely unknown. We used proximity biotinylation proteomic screening to identify the NCLX interactome and define novel regulators of NCLX function. Here, we discover the mitochondrial inner membrane protein, TMEM65, as an NCLX-proximal protein that potently enhances sodium (Na+)-dependent mCa2+ efflux. Mechanistically, acute pharmacologic NCLX inhibition or genetic deletion of NCLX ablates the TMEM65-dependent increase in mCa2+ efflux. Further, loss-of-function studies show that TMEM65 is required for Na+-dependent mCa2+ efflux. Co-fractionation and in silico structural modeling of TMEM65 and NCLX suggest these two proteins exist in a common macromolecular complex in which TMEM65 directly stimulates NCLX function. In line with these findings, knockdown of Tmem65 in mice promotes mCa2+ overload in the heart and skeletal muscle and impairs both cardiac and neuromuscular function. We further demonstrate that TMEM65 deletion causes excessive mitochondrial permeability transition, whereas TMEM65 overexpression protects against necrotic cell death during cellular Ca2+ stress. Collectively, our results show that loss of TMEM65 function in excitable tissue disrupts NCLX-dependent mCa2+ efflux, causing pathogenic mCa2+ overload, cell death and organ-level dysfunction, and that gain of TMEM65 function mitigates these effects. These findings demonstrate the essential role of TMEM65 in regulating NCLX-dependent mCa2+ efflux and suggest modulation of TMEM65 as a novel strategy for the therapeutic control of mCa2+ homeostasis.

5.
Front Cell Dev Biol ; 11: 1196466, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601094

RESUMO

Mitochondria play a critical role in energy metabolism and signal transduction, which is tightly regulated by proteins, metabolites, and ion fluxes. Metabolites and ion homeostasis are mainly mediated by channels and transporters present on mitochondrial membranes. Mitochondria comprise two distinct compartments, the outer mitochondrial membrane (OMM) and the inner mitochondrial membrane (IMM), which have differing permeabilities to ions and metabolites. The OMM is semipermeable due to the presence of non-selective molecular pores, while the IMM is highly selective and impermeable due to the presence of specialized channels and transporters which regulate ion and metabolite fluxes. These channels and transporters are modulated by various post-translational modifications (PTMs), including phosphorylation, oxidative modifications, ions, and metabolites binding, glycosylation, acetylation, and others. Additionally, the mitochondrial protein quality control (MPQC) system plays a crucial role in ensuring efficient molecular flux through the mitochondrial membranes by selectively removing mistargeted or defective proteins. Inefficient functioning of the transporters and channels in mitochondria can disrupt cellular homeostasis, leading to the onset of various pathological conditions. In this review, we provide a comprehensive overview of the current understanding of mitochondrial channels and transporters in terms of their functions, PTMs, and quality control mechanisms.

6.
Sci Signal ; 16(782): eabi8948, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37098122

RESUMO

MICU1 is a calcium (Ca2+)-binding protein that regulates the mitochondrial Ca2+ uniporter channel complex (mtCU) and mitochondrial Ca2+ uptake. MICU1 knockout mice display disorganized mitochondrial architecture, a phenotype that is distinct from that of mice with deficiencies in other mtCU subunits and, thus, is likely not explained by changes in mitochondrial matrix Ca2+ content. Using proteomic and cellular imaging techniques, we found that MICU1 localized to the mitochondrial contact site and cristae organizing system (MICOS) and directly interacted with the MICOS components MIC60 and CHCHD2 independently of the mtCU. We demonstrated that MICU1 was essential for MICOS complex formation and that MICU1 ablation resulted in altered cristae organization, mitochondrial ultrastructure, mitochondrial membrane dynamics, and cell death signaling. Together, our results suggest that MICU1 is an intermembrane space Ca2+ sensor that modulates mitochondrial membrane dynamics independently of matrix Ca2+ uptake. This system enables distinct Ca2+ signaling in the mitochondrial matrix and at the intermembrane space to modulate cellular energetics and cell death in a concerted manner.


Assuntos
Membranas Mitocondriais , Proteômica , Camundongos , Animais , Membranas Mitocondriais/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Camundongos Knockout , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas Mitocondriais/metabolismo
7.
iScience ; 26(3): 106296, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36936788

RESUMO

Mitochondrial calcium overload contributes to neurodegenerative disease development and progression. We recently reported that loss of the mitochondrial sodium/calcium exchanger (NCLX), the primary mechanism of mCa2+ efflux, promotes mCa2+ overload, metabolic derangement, redox stress, and cognitive decline in models of Alzheimer's disease (AD). However, whether disrupted mCa2+ signaling contributes to neuronal pathology and cognitive decline independent of pre-existing amyloid or tau pathology remains unknown. Here, we generated mice with neuronal deletion of the mitochondrial sodium/calcium exchanger (NCLX, Slc8b1 gene), and evaluated age-associated changes in cognitive function and neuropathology. Neuronal loss of NCLX resulted in an age-dependent decline in spatial and cued recall memory, moderate amyloid deposition, mild tau pathology, synaptic remodeling, and indications of cell death. These results demonstrate that loss of NCLX-dependent mCa2+ efflux alone is sufficient to induce an Alzheimer's disease-like pathology and highlights the promise of therapies targeting mCa2+ exchange.

8.
J Mol Med (Berl) ; 101(3): 311-326, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36808555

RESUMO

Ischemia-induced metabolic remodeling plays a critical role in the pathogenesis of adverse cardiac remodeling and heart failure however, the underlying molecular mechanism is largely unknown. Here, we assess the potential roles of nicotinamide riboside kinase-2 (NRK-2), a muscle-specific protein, in ischemia-induced metabolic switch and heart failure through employing transcriptomic and metabolomic approaches in ischemic NRK-2 knockout mice. The investigations revealed NRK-2 as a novel regulator of several metabolic processes in the ischemic heart. Cardiac metabolism and mitochondrial function and fibrosis were identified as top dysregulated cellular processes in the KO hearts post-MI. Several genes linked to mitochondrial function, metabolism, and cardiomyocyte structural proteins were severely downregulated in the ischemic NRK-2 KO hearts. Analysis revealed significantly upregulated ECM-related pathways which was accompanied by the upregulation of several key cell signaling pathways including SMAD, MAPK, cGMP, integrin, and Akt in the KO heart post-MI. Metabolomic studies identified profound upregulation of metabolites mevalonic acid, 3,4-dihydroxyphenylglycol, 2-penylbutyric acid, and uridine. However, other metabolites stearic acid, 8,11,14-eicosatrienoic acid, and 2-pyrrolidinone were significantly downregulated in the ischemic KO hearts. Taken together, these findings suggest that NRK-2 promotes metabolic adaptation in the ischemic heart. The aberrant metabolism in the ischemic NRK-2 KO heart is largely driven by dysregulated cGMP and Akt and mitochondrial pathways. KEY MESSAGES: Post-myocardial infarction metabolic switch critically regulates the pathogenesis of adverse cardiac remodeling and heart failure. Here, we report NRK-2 as a novel regulator of several cellular processes including metabolism and mitochondrial function post-MI. NRK-2 deficiency leads to downregulation of genes important for mitochondrial pathway, metabolism, and cardiomyocyte structural proteins in the ischemic heart. It was accompanied by upregulation of several key cell signaling pathways including SMAD, MAPK, cGMP, integrin, and Akt and dysregulation of numerous metabolites essential for cardiac bioenergetics. Taken together, these findings suggest that NRK-2 is critical for metabolic adaptation of the ischemic heart.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Remodelação Ventricular/fisiologia , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Camundongos Knockout
9.
EMBO J ; 41(19): e110046, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36039850

RESUMO

The role of store-operated Ca2+ entry (SOCE) in melanoma metastasis is highly controversial. To address this, we here examined UV-dependent metastasis, revealing a critical role for SOCE suppression in melanoma progression. UV-induced cholesterol biosynthesis was critical for UV-induced SOCE suppression and subsequent metastasis, although SOCE suppression alone was both necessary and sufficient for metastasis to occur. Further, SOCE suppression was responsible for UV-dependent differences in gene expression associated with both increased invasion and reduced glucose metabolism. Functional analyses further established that increased glucose uptake leads to a metabolic shift towards biosynthetic pathways critical for melanoma metastasis. Finally, examination of fresh surgically isolated human melanoma explants revealed cholesterol biosynthesis-dependent reduced SOCE. Invasiveness could be reversed with either cholesterol biosynthesis inhibitors or pharmacological SOCE potentiation. Collectively, we provide evidence that, contrary to current thinking, Ca2+ signals can block invasive behavior, and suppression of these signals promotes invasion and metastasis.


Assuntos
Sinalização do Cálcio , Melanoma , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Colesterol , Glucose , Humanos , Melanoma/genética , Melanoma/metabolismo , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/metabolismo
10.
Life Sci Alliance ; 5(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35715207

RESUMO

Ion fluxes across the inner mitochondrial membrane control mitochondrial volume, energy production, and apoptosis. TMBIM5, a highly conserved protein with homology to putative pH-dependent ion channels, is involved in the maintenance of mitochondrial cristae architecture, ATP production, and apoptosis. Here, we demonstrate that overexpressed TMBIM5 can mediate mitochondrial calcium uptake. Under steady-state conditions, loss of TMBIM5 results in increased potassium and reduced proton levels in the mitochondrial matrix caused by attenuated exchange of these ions. To identify the in vivo consequences of TMBIM5 dysfunction, we generated mice carrying a mutation in the channel pore. These mutant mice display increased embryonic or perinatal lethality and a skeletal myopathy which strongly correlates with tissue-specific disruption of cristae architecture, early opening of the mitochondrial permeability transition pore, reduced calcium uptake capability, and mitochondrial swelling. Our results demonstrate that TMBIM5 is an essential and important part of the mitochondrial ion transport system machinery with particular importance for embryonic development and muscle function.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial , Doenças Musculares , Animais , Apoptose , Cálcio/metabolismo , Homeostase/genética , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/genética , Doenças Musculares/genética
11.
JCI Insight ; 7(4)2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35050901

RESUMO

Lung alveolar type 2 (AT2) cells are progenitors for alveolar type 1 (AT1) cells. Although many factors regulate AT2 cell plasticity, the role of mitochondrial calcium (mCa2+) uptake in controlling AT2 cells remains unclear. We previously identified that the miR-302 family supports lung epithelial progenitor cell proliferation and less differentiated phenotypes during development. Here, we report that a sustained elevation of miR-302 in adult AT2 cells decreases AT2-to-AT1 cell differentiation during the Streptococcus pneumoniae-induced lung injury repair. We identified that miR-302 targets and represses the expression of mitochondrial Ca2+ uptake 1 (MICU1), which regulates mCa2+ uptake through the mCa2+ uniporter channel by acting as a gatekeeper at low cytosolic Ca2+ levels. Our results reveal a marked increase in MICU1 protein expression and decreased mCa2+ uptake during AT2-to-AT1 cell differentiation in the adult lung. Deletion of Micu1 in AT2 cells reduces AT2-to-AT1 cell differentiation during steady-state tissue maintenance and alveolar epithelial regeneration after bacterial pneumonia. These studies indicate that mCa2+ uptake is extensively modulated during AT2-to-AT1 cell differentiation and that MICU1-dependent mCa2+ uniporter channel gating is a prominent mechanism modulating AT2-to-AT1 cell differentiation.


Assuntos
Células Epiteliais Alveolares/metabolismo , Proteínas de Ligação ao Cálcio/genética , Cálcio/metabolismo , Regulação da Expressão Gênica , Proteínas de Transporte da Membrana Mitocondrial/genética , Pneumonia Bacteriana/genética , RNA/genética , Regeneração/genética , Células Epiteliais Alveolares/patologia , Animais , Transporte Biológico , Proteínas de Ligação ao Cálcio/biossíntese , Diferenciação Celular , Plasticidade Celular , Células Cultivadas , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Transporte da Membrana Mitocondrial/biossíntese , Pneumonia Bacteriana/metabolismo , Pneumonia Bacteriana/patologia
12.
iScience ; 25(1): 103722, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35005527

RESUMO

SARS-CoV-2 is a newly identified coronavirus that causes the respiratory disease called coronavirus disease 2019 (COVID-19). With an urgent need for therapeutics, we lack a full understanding of the molecular basis of SARS-CoV-2-induced cellular damage and disease progression. Here, we conducted transcriptomic analysis of human PBMCs, identified significant changes in mitochondrial, ion channel, and protein quality-control gene products. SARS-CoV-2 proteins selectively target cellular organelle compartments, including the endoplasmic reticulum and mitochondria. M-protein, NSP6, ORF3A, ORF9C, and ORF10 bind to mitochondrial PTP complex components cyclophilin D, SPG-7, ANT, ATP synthase, and a previously undescribed CCDC58 (coiled-coil domain containing protein 58). Knockdown of CCDC58 or mPTP blocker cyclosporin A pretreatment enhances mitochondrial Ca2+ retention capacity and bioenergetics. SARS-CoV-2 infection exacerbates cardiomyocyte autophagy and promotes cell death that was suppressed by cyclosporin A treatment. Our findings reveal that SARS-CoV-2 viral proteins suppress cardiomyocyte mitochondrial function that disrupts cardiomyocyte Ca2+ cycling and cell viability.

14.
JACC Basic Transl Sci ; 6(8): 650-672, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34466752

RESUMO

In this study the authors used systems biology to define progressive changes in metabolism and transcription in a large animal model of heart failure with preserved ejection fraction (HFpEF). Transcriptomic analysis of cardiac tissue, 1-month post-banding, revealed loss of electron transport chain components, and this was supported by changes in metabolism and mitochondrial function, altogether signifying alterations in oxidative metabolism. Established HFpEF, 4 months post-banding, resulted in changes in intermediary metabolism with normalized mitochondrial function. Mitochondrial dysfunction and energetic deficiencies were noted in skeletal muscle at early and late phases of disease, suggesting cardiac-derived signaling contributes to peripheral tissue maladaptation in HFpEF. Collectively, these results provide insights into the cellular biology underlying HFpEF progression.

15.
Virology ; 553: 135-153, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33278736

RESUMO

JC virus encodes an important regulatory protein, known as Agnoprotein (Agno). We have recently reported Agno's first protein-interactome with its cellular partners revealing that it targets various cellular networks and organelles, including mitochondria. Here, we report further characterization of the functional consequences of its mitochondrial targeting and demonstrated its co-localization with the mitochondrial networks and with the mitochondrial outer membrane. The mitochondrial targeting sequence (MTS) of Agno and its dimerization domain together play major roles in this targeting. Data also showed alterations in various mitochondrial functions in Agno-positive cells; including a significant reduction in mitochondrial membrane potential, respiration rates and ATP production. In contrast, a substantial increase in ROS production and Ca2+ uptake by the mitochondria were also observed. Finally, findings also revealed a significant decrease in viral replication when Agno MTS was deleted, highlighting a role for MTS in the function of Agno during the viral life cycle.


Assuntos
Vírus JC/metabolismo , Mitocôndrias/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Viroporinas/metabolismo , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Respiração Celular , Dimerização , Humanos , Potencial da Membrana Mitocondrial , Membranas Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Virais Reguladoras e Acessórias/química , Proteínas Viroporinas/química , Replicação Viral
16.
Nat Commun ; 11(1): 4866, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978391

RESUMO

Mitochondria house evolutionarily conserved pathways of carbon and nitrogen metabolism that drive cellular energy production. Mitochondrial bioenergetics is regulated by calcium uptake through the mitochondrial calcium uniporter (MCU), a multi-protein complex whose assembly in the inner mitochondrial membrane is facilitated by the scaffold factor MCUR1. Intriguingly, many fungi that lack MCU contain MCUR1 homologs, suggesting alternate functions. Herein, we characterize Saccharomyces cerevisiae homologs Put6 and Put7 of MCUR1 as regulators of mitochondrial proline metabolism. Put6 and Put7 are tethered to the inner mitochondrial membrane in a large hetero-oligomeric complex, whose abundance is regulated by proline. Loss of this complex perturbs mitochondrial proline homeostasis and cellular redox balance. Yeast cells lacking either Put6 or Put7 exhibit a pronounced defect in proline utilization, which can be corrected by the heterologous expression of human MCUR1. Our work uncovers an unexpected role of MCUR1 homologs in mitochondrial proline metabolism.


Assuntos
Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Prolina/metabolismo , Saccharomyces cerevisiae/metabolismo , Canais de Cálcio , Regulação Fúngica da Expressão Gênica , Genes Fúngicos/genética , Homeostase , Humanos , Proteínas de Membrana/genética , Redes e Vias Metabólicas/genética , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Transcriptoma
17.
J Card Fail ; 26(12): 1075-1085, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32956817

RESUMO

BACKGROUND: We reported 3 novel nonsynonymous single nucleotide variants of Bcl2-associated athanogene 3 (BAG3) in African Americans with heart failure (HF) that are associated with a 2-fold increase in cardiac events (HF hospitalization, heart transplantation, or death). METHODS AND RESULTS: We expressed BAG3 variants (P63A, P380S, and A479V) via adenovirus-mediated gene transfer in adult left ventricular myocytes isolated from either wild-type (WT) or cardiac-specific BAG3 haploinsufficient (cBAG3+/-) mice: the latter to simulate the clinical situation in which BAG3 variants are only found on 1 allele. Compared with WT myocytes, cBAG3+/- myocytes expressed approximately 50% of endogenous BAG3 levels and exhibited decreased [Ca2+]i and contraction amplitudes after isoproterenol owing to decreased L-type Ca2+ current. BAG3 repletion with WT BAG3 but not P380S, A479V, or P63A/P380S variants restored contraction amplitudes in cBAG3+/- myocytes to those measured in WT myocytes, suggesting excitation-contraction abnormalities partly account for HF in patients harboring these mutants. Because P63A is near the WW domain (residues 21-55) and A479V is in the BAG domain (residues 420-499), we expressed BAG3 deletion mutants (Δ1-61 and Δ421-575) in WT myocytes and demonstrated that the BAG but not the WW domain was involved in enhancement of excitation-contraction by isoproterenol. CONCLUSIONS: The BAG3 variants contribute to HF in African American patients partly by decreasing myocyte excitation-contraction under stress, and that both the BAG and PXXP domains are involved in mediating ß-adrenergic responsiveness in myocytes.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adrenérgicos , Negro ou Afro-Americano/genética , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Cardiomiopatias/genética , Insuficiência Cardíaca/genética , Humanos , Isoproterenol/farmacologia , Camundongos , Contração Miocárdica , Miócitos Cardíacos/metabolismo
18.
Cell Calcium ; 92: 102288, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32956979

RESUMO

Calcium (Ca2+) is known to stimulate mitochondrial bioenergetics through the modulation of TCA cycle dehydrogenases and electron transport chain (ETC) complexes. This is hypothesized to be an essential pathway of energetic control to meet cellular ATP demand. While regulatory mechanisms of mitochondrial calcium uptake have been reported, it remains unknown if metabolite flux itself feedsback to regulate mitochondrial calcium (mCa2+) uptake. This hypothesis was recently tested by Nemani et al. (Sci. Signal. 2020) where the authors report that TCA cycle substrate flux regulates the mitochondrial calcium uniporter channel gatekeeper, mitochondrial calcium uptake 1 (MICU1), gene transcription in an early growth response protein 1 (EGR1) dependent fashion. They posit this is a regulatory feedback mechanism to control ionic homeostasis and mitochondrial bioenergetics with changing fuel availability. Here, we provide a historical overview of mitochondrial calcium exchange and comprehensive appraisal of these results in the context of recent literature and discuss possible regulatory pathways of mCa2+ uptake and mitochondrial bioenergetics.


Assuntos
Canais de Cálcio/metabolismo , Metaboloma , Autofagia , Cálcio/metabolismo , Ciclo do Ácido Cítrico , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Metabolismo Energético , Humanos , Ativação do Canal Iônico , Mitocôndrias/metabolismo , Especificidade por Substrato
19.
Pathogens ; 9(7)2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32645974

RESUMO

The rapidly evolving coronavirus disease 2019 (COVID-19, caused by severe acute respiratory syndrome coronavirus 2- SARS-CoV-2), has greatly burdened the global healthcare system and led it into crisis in several countries. Lack of targeted therapeutics led to the idea of repurposing broad-spectrum drugs for viral intervention. In vitro analyses of hydroxychloroquine (HCQ)'s anecdotal benefits prompted its widespread clinical repurposing globally. Reports of emerging cardiovascular complications due to its clinical prescription are revealing the crucial role of angiotensin-converting enzyme 2 (ACE2), which serves as a target receptor for SARS-CoV-2. In the present settings, a clear understanding of these targets, their functional aspects and physiological impact on cardiovascular function are critical. In an up-to-date format, we shed light on HCQ's anecdotal function in stalling SARS-CoV-2 replication and immunomodulatory activities. While starting with the crucial role of ACE2, we here discuss the impact of HCQ on systemic cardiovascular function, its associated risks, and the scope of HCQ-based regimes in current clinical settings. Citing the extent of HCQ efficacy, the key considerations and recommendations for the use of HCQ in clinics are further discussed. Taken together, this review provides crucial insights into the role of ACE2 in SARS-CoV-2-led cardiovascular activity, and concurrently assesses the efficacy of HCQ in contemporary clinical settings.

20.
Genes (Basel) ; 11(5)2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443488

RESUMO

Mitochondria serve as a hub for many cellular processes, including bioenergetics, metabolism, cellular signaling, redox balance, calcium homeostasis, and cell death. The mitochondrial proteome includes over a thousand proteins, encoded by both the mitochondrial and nuclear genomes. The majority (~99%) of proteins are nuclear encoded that are synthesized in the cytosol and subsequently imported into the mitochondria. Within the mitochondria, polypeptides fold and assemble into their native functional form. Mitochondria health and integrity depend on correct protein import, folding, and regulated turnover termed as mitochondrial protein quality control (MPQC). Failure to maintain these processes can cause mitochondrial dysfunction that leads to various pathophysiological outcomes and the commencement of diseases. Here, we summarize the current knowledge about the role of different MPQC regulatory systems such as mitochondrial chaperones, proteases, the ubiquitin-proteasome system, mitochondrial unfolded protein response, mitophagy, and mitochondria-derived vesicles in the maintenance of mitochondrial proteome and health. The proper understanding of mitochondrial protein quality control mechanisms will provide relevant insights to treat multiple human diseases.


Assuntos
Núcleo Celular/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Biossíntese de Proteínas/genética , Humanos , Mitofagia/genética , Complexo de Endopeptidases do Proteassoma/genética , Dobramento de Proteína , Ubiquitina/genética , Resposta a Proteínas não Dobradas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...