Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 48(24): 14712-20, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25409530

RESUMO

Manufactured nanomaterials (MNMs) are increasingly incorporated into consumer products that are disposed into sewage. In wastewater treatment, MNMs adsorb to activated sludge biomass where they may impact biological wastewater treatment performance, including nutrient removal. Here, we studied MNM effects on bacterial polyhydroxyalkanoate (PHA), specifically polyhydroxybutyrate (PHB), biosynthesis because of its importance to enhanced biological phosphorus (P) removal (EBPR). Activated sludge was sampled from an anoxic selector of a municipal wastewater treatment plant (WWTP), and PHB-containing bacteria were concentrated by density gradient centrifugation. After starvation to decrease intracellular PHB stores, bacteria were nutritionally augmented to promote PHB biosynthesis while being exposed to either MNMs (TiO2 or Ag) or to Ag salts (each at a concentration of 5 mg L(-1)). Cellular PHB concentration and PhyloChip community composition were analyzed. The final bacterial community composition differed from activated sludge, demonstrating that laboratory enrichment was selective. Still, PHB was synthesized to near-activated sludge levels. Ag salts altered final bacterial communities, although MNMs did not. PHB biosynthesis was diminished with Ag (salt or MNMs), indicating the potential for Ag-MNMs to physiologically impact EBPR through the effects of dissolved Ag ions on PHB producers.


Assuntos
Bactérias/metabolismo , Nanopartículas , Poliésteres/metabolismo , Esgotos/microbiologia , Prata/farmacologia , Titânio/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Biomassa , Consórcios Microbianos/efeitos dos fármacos , Consórcios Microbianos/genética , RNA Ribossômico 16S , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias
2.
Environ Sci Technol ; 48(5): 2551-60, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24483287

RESUMO

We examined the potential life-cycle environmental impact reduction of three green building code and certification (GBCC) systems: LEED, ASHRAE 189.1, and IgCC. A recently completed whole-building life cycle assessment (LCA) database of NIST was applied to a prototype building model specification by NREL. TRACI 2.0 of EPA was used for life cycle impact assessment (LCIA). The results showed that the baseline building model generates about 18 thousand metric tons CO2-equiv. of greenhouse gases (GHGs) and consumes 6 terajoule (TJ) of primary energy and 328 million liter of water over its life-cycle. Overall, GBCC-compliant building models generated 0% to 25% less environmental impacts than the baseline case (average 14% reduction). The largest reductions were associated with acidification (25%), human health-respiratory (24%), and global warming (GW) (22%), while no reductions were observed for ozone layer depletion (OD) and land use (LU). The performances of the three GBCC-compliant building models measured in life-cycle impact reduction were comparable. A sensitivity analysis showed that the comparative results were reasonably robust, although some results were relatively sensitive to the behavioral parameters, including employee transportation and purchased electricity during the occupancy phase (average sensitivity coefficients 0.26-0.29).


Assuntos
Códigos de Obras , Conservação dos Recursos Naturais/métodos , Indústria da Construção/normas , Poluição Ambiental/prevenção & controle , Manufaturas , Certificação , Aquecimento Global , Humanos , Modelos Teóricos , Meios de Transporte , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...