Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bone ; 183: 117089, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38575047

RESUMO

INTRODUCTION: Patients with chronic kidney disease (CKD) are at an alarming risk of fracture compared to age and sex-matched non-CKD individuals. Clinical and preclinical data highlight two key factors in CKD-induced skeletal fragility: cortical porosity and reduced matrix-level properties including bone hydration. Thus, strategies are needed to address these concerns to improve mechanical properties and ultimately lower fracture risk in CKD. We sought to evaluate the singular and combined effects of mechanical and pharmacological interventions on modulating porosity, bone hydration, and mechanical properties in CKD. METHODS: Sixteen-week-old male C57BL/6J mice underwent a 10-week CKD induction period via a 0.2 % adenine-laced casein-based diet (n = 48) or remained as non-CKD littermate controls (Con, n = 48). Following disease induction (26 weeks of age), n = 7 CKD and n = 7 Con were sacrificed (baseline cohort) to confirm a steady-state CKD state was achieved prior to the initiation of treatment. At 27 weeks of age, all remaining mice underwent right tibial loading to a maximum tensile strain of 2050 µÆ 3× a week for five weeks with the contralateral limb as a non-loaded control. Half of the mice (equal number CKD and Con) received subcutaneous injections of 0.5 mg/kg raloxifene (RAL) 5× a week, and the other half remained untreated (UN). Mice were sacrificed at 31 weeks of age. Serum biochemistries were performed, and bi-lateral tibiae were assessed for microarchitecture, whole bone and tissue level mechanical properties, and composition including bone hydration. RESULTS: Regardless of intervention, BUN and PTH were higher in CKD animals throughout the study. In CKD, the combined effects of loading and RAL were quantified as lower cortical porosity and improved mechanical, material, and compositional properties, including higher matrix-bound water. Loading was generally responsible for positive impacts in cortical geometry and structural mechanical properties, while RAL treatment improved some trabecular outcomes and material-level mechanical properties and was responsible for improvements in several compositional parameters. While control animals responded positively to loading, their bones were less impacted by the RAL treatment, showing no deformation, toughness, or bound water improvements which were all evident in CKD. Serum PTH levels were negatively correlated with matrix-bound water. DISCUSSION: An effective treatment program to improve fracture risk in CKD ideally focuses on the cortical bone and considers both cortical porosity and matrix properties. Loading-induced bone formation and mechanical improvements were observed across groups, and in the CKD cohort, this included lower cortical porosity. This study highlights that RAL treatment superimposed on active bone formation may be ideal for reducing skeletal complications in CKD by forming new bone with enhanced matrix properties.


Assuntos
Fraturas Ósseas , Insuficiência Renal Crônica , Camundongos , Humanos , Masculino , Animais , Cloridrato de Raloxifeno/farmacologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Fraturas Ósseas/complicações , Água
2.
Bone ; 173: 116808, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37207990

RESUMO

Chronic kidney disease (CKD) is characterized by secondary hyperparathyroidism and an increased risk of hip fractures predominantly related to cortical porosity. Unfortunately, bone mineral density measurements and high-resolution peripheral computed tomography (HR-pQCT) imaging have shortcomings that limit their utility in these patients. Ultrashort echo time magnetic resonance imaging (UTE-MRI) has the potential to overcome these limitations by providing an alternative assessment of cortical porosity. The goal of the current study was to determine if UTE-MRI could detect changes in porosity in an established rat model of CKD. Cy/+ rats (n = 11), an established animal model of CKD-MBD, and their normal littermates (n = 12) were imaged using microcomputed tomography (microCT) and UTE-MRI at 30 and 35 weeks of age (which approximates late-stage kidney disease in humans). Images were obtained at the distal tibia and the proximal femur. Cortical porosity was assessed using the percent porosity (Pore%) calculated from microCT imaging and the porosity index (PI) calculated from UTE-MRI. Correlations between Pore% and PI were also calculated. Cy/+ rats had higher Pore% than normal rats at both skeletal sites at 35 weeks (tibia = 7.13 % +/- 5.59 % vs. 0.51 % +/- 0.09 %, femur = 19.99 % +/- 7.72 % vs. 2.72 % +/- 0.32 %). They also had greater PI at the distal tibia at 30 weeks of age (0.47 +/- 0.06 vs. 0.40 +/- 0.08). However, Pore% and PI were only correlated in the proximal femur at 35 weeks of age (ρ = 0.929, Spearman). These microCT results are consistent with prior studies in this animal model utilizing microCT imaging. The UTE-MRI results were inconsistent, resulting in variable correlations with microCT imaging, which may be related to suboptimal bound and pore water discrimination at higher magnetic field strengths. Nevertheless, UTE-MRI may still provide an additional clinical tool to assess fracture risk without using ionizing radiation in CKD patients.


Assuntos
Fraturas do Quadril , Insuficiência Renal Crônica , Humanos , Animais , Ratos , Microtomografia por Raio-X , Porosidade , Osso Cortical/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Densidade Óssea , Modelos Animais , Insuficiência Renal Crônica/diagnóstico por imagem
3.
Biofabrication ; 13(4)2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34479218

RESUMO

Successful 3D scaffold designs for musculoskeletal tissue engineering necessitate full consideration of the form and function of the tissues of interest. When designing structures for engineering cartilage and osteochondral tissues, one must reconcile the need to develop a mechanically robust system that maintains the health of cells embedded in the scaffold. In this work, we present an approach that decouples the mechanical and biochemical needs and allows for the independent development of the structural and cellular niches in a scaffold. Using the highly tuned capabilities of digital light processing-based stereolithography, structures with complex architectures are achieved over a range of effective porosities and moduli. The 3D printed structure is infilled with mesenchymal stem cells and soft biomimetic hydrogels, which are specifically formulated with extracellular matrix analogs and tethered growth factors to provide selected biochemical cues for the guided differentiation towards chondrogenesis and osteogenesis. We demonstrate the ability to utilize these structures to (a) infill a focal chondral defect and mitigate macroscopic and cellular level changes in the cartilage surrounding the defect, and (b) support the development of a stratified multi-tissue scaffold for osteochondral tissue engineering.


Assuntos
Biomimética , Engenharia Tecidual , Cartilagem , Condrogênese , Hidrogéis , Impressão Tridimensional , Estereolitografia , Alicerces Teciduais
4.
Nano Lett ; 20(5): 3306-3312, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32227973

RESUMO

Metalattices are artificial 3D solids, periodic on sub-100 nm length scales, that enable the functional properties of materials to be tuned. However, because of their complex structure, predicting and characterizing their properties is challenging. Here we demonstrate the first nondestructive measurements of the mechanical and structural properties of metalattices with feature sizes down to 14 nm. By monitoring the time-dependent diffraction of short wavelength light from laser-excited acoustic waves in the metalattices, we extract their acoustic dispersion, Young's modulus, filling fraction, and thicknesses. Our measurements are in excellent agreement with macroscopic predictions and potentially destructive techniques such as nanoindentation and scanning electron microscopy, with increased accuracy over larger areas. This is interesting because the transport properties of these metalattices do not obey bulk predictions. Finally, this approach is the only way to validate the filling fraction of metalattices over macroscopic areas. These combined capabilities can enable accurate synthesis of nanoenhanced materials.

5.
Biochem Biophys Res Commun ; 514(3): 940-945, 2019 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-31088681

RESUMO

Focal defects in articular cartilage are unable to self-repair and, if left untreated, are a leading risk factor for osteoarthritis. This study examined cartilage degeneration surrounding a defect and then assessed whether infilling the defect prevents degeneration. We created a focal chondral defect in porcine osteochondral explants and cultured them ex vivo with and without dynamic compressive loading to decouple the role of loading. When compared to a defect in a porcine knee four weeks post-injury, this model captured loss in sulfated glycosaminoglycans (sGAGs) along the defect's edge that was observed in vivo, but this loss was not load dependent. Loading, however, reduced the indentation modulus of the surrounding cartilage. After infilling with in situ polymerized hydrogels that were soft (100 kPa) or stiff (1 MPa) and which produced swelling pressures of 13 and 310 kPa, respectively, sGAG loss was reduced. This reduction correlated with increased hydrogel stiffness and swelling pressure, but was not affected by loading. This ex vivo model recapitulates sGAG loss surrounding a defect and, when infilled with a mechanically supportive hydrogel, degeneration is minimized.


Assuntos
Doenças das Cartilagens/patologia , Cartilagem Articular/patologia , Animais , Fenômenos Biomecânicos , Doenças das Cartilagens/terapia , Modelos Animais de Doenças , Feminino , Hidrogéis/uso terapêutico , Proteoglicanas/análise , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...