Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Med Chem Lett ; 15(8): 1319-1324, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39140038

RESUMO

Galectin-8 contains two different carbohydrate recognition domains (CRDs). Selective inhibitors for at least one CRD are desirable for galectin-8 biology studies and potentially for pharmacological purposes. Structure-guided design led to the discovery of potent and selective glycomimetic-heterocycle hybrid ligands, with a 4-(p-bromophenyl)phthalazinone derivative displaying a 34 µM K d for galectin-8N (N-terminal CRD), no binding to galectin-8C (C-terminal CRD), -1, -3, -4N, -7, -9C, or -9N, and >40-fold selectivity over galectin-4C. Selectivity was achieved with the halogenated 4-phenylphthalazinone moiety occupying a galectin-8N-specific sub-pocket. A 1.30 Å resolution X-ray structure revealed the phthalazinone moiety stacking with Arg45 and the 4-bromophenyl moiety stacking both Arg59 and Tyr141 of galectin-8N. Physicochemical and in vitro ADME studies revealed a desirable LogD, which also translated to good passive permeability. The chemical, microsome, and plasma stability support these compounds as promising tool compounds and candidates for hit-to-lead optimization.

2.
Antibiotics (Basel) ; 13(8)2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39200051

RESUMO

Bacteria are capable of remarkable adaptations to their environment, including undesirable bacterial resistance to antibacterial agents. One of the most serious cases is an infection caused by multidrug-resistant Staphylococcus aureus, which has unfortunately also spread outside hospitals. Therefore, the development of new effective antibacterial agents is extremely important to solve the increasing problem of bacterial resistance. The bacteriolytic enzyme autolysin E (AtlE) is a promising new drug target as it plays a key role in the degradation of peptidoglycan in the bacterial cell wall. Consequently, disruption of function can have an immense impact on bacterial growth and survival. An in silico and in vitro evaluation of iminosugar derivatives as potent inhibitors of S. aureus (AtlE) was performed. Three promising hit compounds (1, 3 and 8) were identified as AtlE binders in the micromolar range as measured by surface plasmon resonance. The most potent compound among the SPR response curve hits was 1, with a KD of 19 µM. The KD value for compound 8 was 88 µM, while compound 3 had a KD value of 410 µM.

3.
J Med Chem ; 67(15): 12984-13018, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39042910

RESUMO

Triple-negative breast cancer (TNBC) remains a treatment challenge and requires innovative therapies. Hsp90, crucial for the stability of numerous oncogenic proteins, has emerged as a promising therapeutic target. In this study, we present the optimization of the Hsp90 C-terminal domain (CTD) inhibitor TVS21. Biochemical methods, NMR binding studies, and molecular modeling were employed to investigate the binding of representative analogs to Hsp90. The newly synthesized analogs showed increased antiproliferative activity in breast cancer cell lines, including the MDA-MB-231 TNBC cell line. Compounds 89 and 104 proved to be the most effective, inducing apoptosis, slowing proliferation, and degrading key oncogenic proteins without inducing a heat shock response. In vivo, compound 89 showed comparable efficacy to the clinical candidate AUY922 and a better safety profile in a TNBC xenograft model. These results highlight the promise of Hsp90 CTD inhibitors for TNBC therapy, potentially filling a significant treatment gap.


Assuntos
Antineoplásicos , Proteínas de Choque Térmico HSP90 , Neoplasias de Mama Triplo Negativas , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Antineoplásicos/uso terapêutico , Animais , Feminino , Linhagem Celular Tumoral , Camundongos , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto , Apoptose/efeitos dos fármacos , Camundongos Nus , Modelos Moleculares
4.
Eur J Med Chem ; 276: 116693, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39053193

RESUMO

New 2-pyrrolamidobenzothiazole-based inhibitors of mycobacterial DNA gyrase were discovered. Among these, compounds 49 and 51, show excellent antibacterial activity against Mycobacterium tuberculosis and Mycobacterium abscessus with a notable preference for mycobacteria. Both compounds can penetrate infected macrophages and reduce intracellular M. tuberculosis load. Compound 51 is a potent inhibitor of DNA gyrase (M. tuberculosis DNA gyrase IC50 = 4.1 nM, Escherichia coli DNA gyrase IC50 of <10 nM), selective for bacterial topoisomerases. It displays low MIC90 values (M. tuberculosis: 0.63 µM; M. abscessus: 2.5 µM), showing specificity for mycobacteria, and no apparent toxicity. Compound 49 not only displays potent antimycobacterial activity (MIC90 values of 2.5 µM for M. tuberculosis and 0.63 µM for M. abscessus) and selectivity for mycobacteria but also exhibits favorable solubility (kinetic solubility = 55 µM) and plasma protein binding (with a fraction unbound of 2.9 % for human and 4.7 % for mouse). These findings underscore the potential of fine-tuning molecular properties to develop DNA gyrase B inhibitors that specifically target the mycobacterial chemical space, mitigating the risk of resistance development in non-target pathogens and minimizing harm to the microbiome.


Assuntos
Antibacterianos , DNA Girase , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Inibidores da Topoisomerase II , DNA Girase/metabolismo , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/síntese química , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Relação Estrutura-Atividade , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Estrutura Molecular , Camundongos , Animais , Relação Dose-Resposta a Droga , Antituberculosos/farmacologia , Antituberculosos/química , Antituberculosos/síntese química , Desenvolvimento de Medicamentos , Mycobacterium/efeitos dos fármacos
5.
Bioorg Med Chem ; 109: 117798, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38906068

RESUMO

N-(Benzothiazole-2-yl)pyrrolamide DNA gyrase inhibitors with benzyl or phenethyl substituents attached to position 3 of the benzothiazole ring or to the carboxamide nitrogen atom were prepared and studied for their inhibition of Escherichia coli DNA gyrase by supercoiling assay. Compared to inhibitors bearing the substituents at position 4 of the benzothiazole ring, the inhibition was attenuated by moving the substituent to position 3 and further to the carboxamide nitrogen atom. A co-crystal structure of (Z)-3-benzyl-2-((4,5-dibromo-1H-pyrrole-2-carbonyl)imino)-2,3-dihydrobenzo[d]-thiazole-6-carboxylic acid (I) in complex with E. coli GyrB24 (ATPase subdomain) was solved, revealing the binding mode of this type of inhibitor to the ATP-binding pocket of the E. coli GyrB subunit. The key binding interactions were identified and their contribution to binding was rationalised by quantum theory of atoms in molecules (QTAIM) analysis. Our study shows that the benzyl or phenethyl substituents bound to the benzothiazole core interact with the lipophilic floor of the active site, which consists mainly of residues Gly101, Gly102, Lys103 and Ser108. Compounds with substituents at position 3 of the benzothiazole core were up to two orders of magnitude more effective than compounds with substituents at the carboxamide nitrogen. In addition, the 6-oxalylamino compounds were more potent inhibitors of E. coli DNA gyrase than the corresponding 6-acetamido analogues.


Assuntos
DNA Girase , Escherichia coli , Inibidores da Topoisomerase II , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/síntese química , DNA Girase/metabolismo , DNA Girase/química , Sítios de Ligação , Escherichia coli/enzimologia , Escherichia coli/efeitos dos fármacos , Relação Estrutura-Atividade , Benzotiazóis/química , Benzotiazóis/farmacologia , Benzotiazóis/síntese química , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Estrutura Molecular , Teoria Quântica , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Modelos Moleculares
6.
J Chem Inf Model ; 64(12): 4850-4862, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38850237

RESUMO

The human voltage-gated proton channel, hHV1, is highly expressed in various cell types including macrophages, B lymphocytes, microglia, sperm cells and also in various cancer cells. Overexpression of HV1 has been shown to promote tumor formation by highly metastatic cancer cells, and has been associated with neuroinflammatory diseases, immune response disorders and infertility, suggesting a potential use of hHV1 inhibitors in numerous therapeutic areas. To identify compounds targeting this channel, we performed a structure-based virtual screening on an open structure of the human HV1 channel. Twenty selected virtual screening hits were tested on Chinese hamster ovary (CHO) cells transiently expressing hHV1, with compound 13 showing strong block of the proton current with an IC50 value of 8.5 µM. Biological evaluation of twenty-three additional analogs of 13 led to the discovery of six other compounds that blocked the proton current by more than 50% at 50 µM concentration. This allowed for an investigation of structure-activity relationships. The antiproliferative activity of the selected promising hHV1 inhibitors was investigated in the cell lines MDA-MB-231 and THP-1, where compound 13 inhibited growth with an IC50 value of 9.0 and 8.1 µM, respectively. The identification of a new structural class of HV1 inhibitors contributes to our understanding of the structural requirements for inhibition of this ion channel and opens up the possibility of investigating the role of HV1 inhibitors in various pathological conditions and in cancer therapy.


Assuntos
Cricetulus , Canais Iônicos , Humanos , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/metabolismo , Células CHO , Animais , Relação Estrutura-Atividade , Avaliação Pré-Clínica de Medicamentos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Interface Usuário-Computador , Simulação de Acoplamento Molecular
7.
Biomed Pharmacother ; 177: 116941, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38889640

RESUMO

The development of new anticancer agents is one of the most urgent topics in drug discovery. Inhibition of molecular chaperone Hsp90 stands out as an approach that affects various oncogenic proteins in different types of cancer. These proteins rely on Hsp90 to obtain their functional structure, and thus Hsp90 is indirectly involved in the pathophysiology of cancer. However, the most studied ATP-competitive inhibition of Hsp90 at the N-terminal domain has proven to be largely unsuccessful clinically. Therefore, research has shifted towards Hsp90 C-terminal domain (CTD) inhibitors, which are also the focus of this study. Our recent discovery of compound C has provided us with a starting point for exploring the structure-activity relationship and optimising this new class of triazole-based Hsp90 inhibitors. This investigation has ultimately led to a library of 33 analogues of C that have suitable physicochemical properties and several inhibit the growth of different cancer types in the low micromolar range. Inhibition of Hsp90 was confirmed by biophysical and cellular assays and the binding epitopes of selected inhibitors were studied by STD NMR. Furthermore, the most promising Hsp90 CTD inhibitor 5x was shown to induce apoptosis in breast cancer (MCF-7) and Ewing sarcoma (SK-N-MC) cells while inducing cause cell cycle arrest in MCF-7 cells. In MCF-7 cells, it caused a decrease in the levels of ERα and IGF1R, known Hsp90 client proteins. Finally, 5x was tested in zebrafish larvae xenografted with SK-N-MC tumour cells, where it limited tumour growth with no obvious adverse effects on normal zebrafish development.


Assuntos
Antineoplásicos , Apoptose , Proteínas de Choque Térmico HSP90 , Triazóis , Peixe-Zebra , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/metabolismo , Triazóis/farmacologia , Triazóis/química , Triazóis/síntese química , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Relação Estrutura-Atividade , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Células MCF-7 , Proliferação de Células/efeitos dos fármacos
8.
Artigo em Inglês | MEDLINE | ID: mdl-38776787

RESUMO

DNA gyrase and topoisomerase IV play significant role in maintaining the correct structure of DNA during replication and they have been identified as validated targets in antibacterial drug discovery. Inadequate pharmacokinetic properties are responsible for many failures during drug discovery and their estimation in the early phase of this process maximizes the chance of getting useful drug candidates. Passive gastrointestinal absorption of a selected group of thirteen dual DNA gyrase and topoisomerase IV inhibitors was estimated using two in vitro tests - parallel artificial membrane permeability assay (PAMPA) and biopartitioning micellar chromatography (BMC). Due to good correlation between obtained results, passive gastrointestinal absorption of remaining ten compounds was estimated using only BMC. With this experimental setup, it was possible to identify compounds with high values of retention factors (k) and highest expected passive gastrointestinal absorption, and compounds with low values of k for which low passive gastrointestinal absorption is predicted. Quantitative structure-retention relationship (QSRR) modelling was performed by creating multiple linear regression (MLR), partial least squares (PLS) and support vector machines (SVM) models. Descriptors with the highest influence on retention factor were identified and their interpretation can be used for the design of new compounds with improved passive gastrointestinal absorption.


Assuntos
Absorção Gastrointestinal , Relação Quantitativa Estrutura-Atividade , Inibidores da Topoisomerase II , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacocinética , Micelas , Modelos Lineares , Membranas Artificiais , DNA Girase/metabolismo , DNA Girase/química , Humanos , DNA Topoisomerase IV/metabolismo , DNA Topoisomerase IV/antagonistas & inibidores , DNA Topoisomerase IV/química
9.
Bioorg Chem ; 147: 107321, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604018

RESUMO

Finding potent inhibitors of O-GlcNAc transferase (OGT) has proven to be a challenge, especially because the diversity of published inhibitors is low. The large majority of available OGT inhibitors are uridine-based or uridine-like compounds that mimic the main interactions of glycosyl donor UDP-GlcNAc with the enzyme. Until recently, screening of DNA-encoded libraries for discovering hits against protein targets was dedicated to a few laboratories around the world, but has become accessible to wider public with the recent launch of the DELopen platform. Here we report the results and follow-up of a DNA-encoded library screening by using the DELopen platform. This led to the discovery of two new hits with structural features not resembling UDP. Small focused libraries bearing those two scaffolds were made, leading to low micromolar inhibition of OGT and elucidation of their structure-activity relationship.


Assuntos
DNA , Descoberta de Drogas , Inibidores Enzimáticos , N-Acetilglucosaminiltransferases , Bibliotecas de Moléculas Pequenas , N-Acetilglucosaminiltransferases/antagonistas & inibidores , N-Acetilglucosaminiltransferases/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Relação Estrutura-Atividade , DNA/química , DNA/metabolismo , Humanos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/síntese química , Estrutura Molecular , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Difosfato de Uridina/metabolismo , Difosfato de Uridina/química
10.
RSC Adv ; 14(5): 2905-2917, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38239435

RESUMO

Benzothiazole-based bacterial DNA gyrase and topoisomerase IV inhibitors are promising new antibacterial agents with potent activity against Gram-positive and Gram-negative bacterial strains. The aim of this study was to improve the uptake of these inhibitors into the cytoplasm of Gram-negative bacteria by conjugating them to the small siderophore mimics. The best conjugate 18b displayed potent Escherichia coli DNA gyrase and topoisomerase IV inhibition. The interaction analysis of molecular dynamics simulation trajectory showed the important contribution of the siderophore mimic moiety to binding affinity. By NMR spectroscopy, we demonstrated that the hydroxypyridinone moiety alone was responsible for the chelation of iron(iii). Moreover, 18b showed an enhancement of antibacterial activity against E. coli JW5503 in an iron-depleted medium, clearly indicating an increased uptake of 18b in this bacterial strain.

11.
Chembiochem ; 25(2): e202300638, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37971396

RESUMO

This study aimed to identify inhibitors of the translocated intimin receptor (Tir) of enteropathogenic Escherichia coli (EPEC). EPEC is an intestinal pathogen that causes diarrhea and is a major health concern worldwide. Because Tir is a key virulence factor involved in EPEC pathogenesis, inhibiting its function is a potential strategy for controlling EPEC infections. Virtual screening was applied to chemical libraries to search for compounds that inhibit Tir-mediated bacterial adherence to host cells. Three sites were targeted using the cocrystal structure published earlier. A selection of compounds was then assessed in a cell-based infection model and fluorescence microscopy assay. The results of this study provide a basis for further optimization and testing of Tir inhibitors as potential therapeutic agents for EPEC infections.


Assuntos
Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Proteínas de Escherichia coli , Humanos , Escherichia coli Enteropatogênica/metabolismo , Adesinas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Receptores de Superfície Celular/química , Proteínas de Transporte , Infecções por Escherichia coli/microbiologia
12.
Eur J Med Chem ; 259: 115561, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37454520

RESUMO

Voltage-gated potassium channel KV1.3 inhibitors have been shown to be effective in preventing T-cell proliferation and activation by affecting intracellular Ca2+ homeostasis. Here, we present the structure-activity relationship, KV1.3 inhibition, and immunosuppressive effects of new thiophene-based KV1.3 inhibitors with nanomolar potency on K+ current in T-lymphocytes and KV1.3 inhibition on Ltk- cells. The new KV1.3 inhibitor trans-18 inhibited KV1.3 -mediated current in phytohemagglutinin (PHA)-activated T-lymphocytes with an IC50 value of 26.1 nM and in mammalian Ltk- cells with an IC50 value of 230 nM. The KV1.3 inhibitor trans-18 also had nanomolar potency against KV1.3 in Xenopus laevis oocytes (IC50 = 136 nM). The novel thiophene-based KV1.3 inhibitors impaired intracellular Ca2+ signaling as well as T-cell activation, proliferation, and colony formation.


Assuntos
Imunossupressores , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Tiofenos , Animais , Mamíferos/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/metabolismo , Canais de Potássio/farmacologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/farmacologia , Relação Estrutura-Atividade , Linfócitos T , Tiofenos/química , Tiofenos/farmacologia , Imunossupressores/química
13.
ACS Omega ; 8(27): 24387-24395, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37457471

RESUMO

We present a new series of 2-aminobenzothiazole-based DNA gyrase B inhibitors with promising activity against ESKAPE bacterial pathogens. Based on the binding information extracted from the cocrystal structure of DNA gyrase B inhibitor A, in complex with Escherichia coli GyrB24, we expanded the chemical space of the benzothiazole-based series to the C5 position of the benzothiazole ring. In particular, compound E showed low nanomolar inhibition of DNA gyrase (IC50 < 10 nM) and broad-spectrum antibacterial activity against pathogens belonging to the ESKAPE group, with the minimum inhibitory concentration < 0.03 µg/mL for most Gram-positive strains and 4-16 µg/mL against Gram-negative E. coli, Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. To understand the binding mode of the synthesized inhibitors, a combination of docking calculations, molecular dynamics (MD) simulations, and MD-derived structure-based pharmacophore modeling was performed. The computational analysis has revealed that the substitution at position C5 can be used to modify the physicochemical properties and antibacterial spectrum and enhance the inhibitory potency of the compounds. Additionally, a discussion of challenges associated with the synthesis of 5-substituted 2-aminobenzothiazoles is presented.

14.
Eur J Med Chem ; 258: 115530, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37329714

RESUMO

Voltage-gated sodium channels (Navs) play an essential role in neurotransmission, and their dysfunction is often a cause of various neurological disorders. The Nav1.3 isoform is found in the CNS and upregulated after injury in the periphery, but its role in human physiology has not yet been fully elucidated. Reports suggest that selective Nav1.3 inhibitors could be used as novel therapeutics to treat pain or neurodevelopmental disorders. Few selective inhibitors of this channel are known in the literature. In this work, we report the discovery of a new series of aryl and acylsulfonamides as state-dependent inhibitors of Nav1.3 channels. Using a ligand-based 3D similarity search and subsequent hit optimization, we identified and prepared a series of 47 novel compounds and tested them on Nav1.3, Nav1.5, and a selected subset also on Nav1.7 channels in a QPatch patch-clamp electrophysiology assay. Eight compounds had an IC50 value of less than 1 µM against the Nav1.3 channel inactivated state, with one compound displaying an IC50 value of 20 nM, whereas activity against the inactivated state of the Nav1.5 channel and Nav1.7 channel was approximately 20-fold weaker. None of the compounds showed use-dependent inhibition of the cardiac isoform Nav1.5 at a concentration of 30 µM. Further selectivity testing of the most promising hits was measured using the two-electrode voltage-clamp method against the closed state of the Nav1.1-Nav1.8 channels, and compound 15b displayed small, yet selective, effects against the Nav1.3 channel, with no activity against the other isoforms. Additional selectivity testing of promising hits against the inactivated state of the Nav1.3, Nav1.7, and Nav1.8 channels revealed several compounds with robust and selective activity against the inactivated state of the Nav1.3 channel among the three isoforms tested. Moreover, the compounds were not cytotoxic at a concentration of 50 µM, as demonstrated by the assay in human HepG2 cells (hepatocellular carcinoma cells). The novel state-dependent inhibitors of Nav1.3 discovered in this work provide a valuable tool to better evaluate this channel as a potential drug target.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.7 , Canais de Sódio Disparados por Voltagem , Humanos , Linhagem Celular , Dor , Isoformas de Proteínas , Bloqueadores dos Canais de Sódio/farmacologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia
16.
J Med Chem ; 66(6): 3968-3994, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36877255

RESUMO

A new series of dual low nanomolar benzothiazole inhibitors of bacterial DNA gyrase and topoisomerase IV were developed. The resulting compounds show excellent broad-spectrum antibacterial activities against Gram-positive Enterococcus faecalis, Enterococcus faecium and multidrug resistant (MDR) Staphylococcus aureus strains [best compound minimal inhibitory concentrations (MICs): range, <0.03125-0.25 µg/mL] and against the Gram-negatives Acinetobacter baumannii and Klebsiella pneumoniae (best compound MICs: range, 1-4 µg/mL). Lead compound 7a was identified with favorable solubility and plasma protein binding, good metabolic stability, selectivity for bacterial topoisomerases, and no toxicity issues. The crystal structure of 7a in complex with Pseudomonas aeruginosa GyrB24 revealed its binding mode at the ATP-binding site. Expanded profiling of 7a and 7h showed potent antibacterial activity against over 100 MDR and non-MDR strains of A. baumannii and several other Gram-positive and Gram-negative strains. Ultimately, in vivo efficacy of 7a in a mouse model of vancomycin-intermediate S. aureus thigh infection was also demonstrated.


Assuntos
Staphylococcus aureus , Staphylococcus aureus Resistente à Vancomicina , Animais , Camundongos , Staphylococcus aureus/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , DNA Girase/metabolismo , DNA Topoisomerase IV , Testes de Sensibilidade Microbiana
17.
Pharmacol Ther ; 245: 108396, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37001734

RESUMO

The heat shock protein 90 (Hsp90) family consists of four highly conserved isoforms: the mitochondrial TRAP-1, the endoplasmic reticulum-localised Grp94, and the cytoplasmic Hsp90α and Hsp90ß. Since the late 1990s, this family has been extensively studied as a potential target for the treatment of cancer, neurological disorders, and infectious diseases. The initial approach was to develop non-selective, so-called pan-Hsp90 ATP-competitive inhibitors of the N-terminal domain. Many of these agents were tested in clinical trials, mainly for the treatment of cancer, but none of them succeeded in the clinic. This was mainly due to the lack of efficacy and various toxicities associated with the induction of heat shock response (HSR). This lack of success has prompted a turn to new approaches of Hsp90 inhibition. Thus, inhibitors selective for a particular isoform of Hsp90 have been developed. These isoform-selective inhibitors do not induce HSR and have a more targeted effect because not all client proteins are equally dependent on all four paralogues of Hsp90. However, it is extremely difficult to develop such selective compounds because the family is highly conserved. Hsp90α and Hsp90ß have an amazing 95% identity of the N-terminal ATP binding site, differing only in two amino acid residues. Therefore, the focus of this review is to fully elucidate the key structural features of the selective inhibitor classes in terms of binding site dissimilarities. In addition to a methodological characterisation of the structure-activity relationships, the main advantages of selective inhibition of the TRAP-1, Grp94, Hsp90α and Hsp90ß isoforms are discussed.


Assuntos
Antineoplásicos , Humanos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Sítios de Ligação , Antineoplásicos/farmacologia , Ligação Proteica , Trifosfato de Adenosina/metabolismo , Proteínas de Choque Térmico HSP90
18.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834837

RESUMO

T-type calcium (CaV3) channels are involved in cardiac automaticity, development, and excitation-contraction coupling in normal cardiac myocytes. Their functional role becomes more pronounced in the process of pathological cardiac hypertrophy and heart failure. Currently, no CaV3 channel inhibitors are used in clinical settings. To identify novel T-type calcium channel ligands, purpurealidin analogs were electrophysiologically investigated. These compounds are alkaloids produced as secondary metabolites by marine sponges, and they exhibit a broad range of biological activities. In this study, we identified the inhibitory effect of purpurealidin I (1) on the rat CaV3.1 channel and conducted structure-activity relationship studies by characterizing the interaction of 119 purpurealidin analogs. Next, the mechanism of action of the four most potent analogs was investigated. Analogs 74, 76, 79, and 99 showed a potent inhibition on the CaV3.1 channel with IC50's at approximately 3 µM. No shift of the activation curve could be observed, suggesting that these compounds act like a pore blocker obstructing the ion flow by binding in the pore region of the CaV3.1 channel. A selectivity screening showed that these analogs are also active on hERG channels. Collectively, a new class of CaV3 channel inhibitors has been discovered and the structure-function studies provide new insights into the synthetic design of drugs and the mechanism of interaction with T-type CaV channels.


Assuntos
Poríferos , Ratos , Animais , Miócitos Cardíacos/metabolismo
19.
ChemMedChem ; 18(8): e202300001, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-36752318

RESUMO

ß-N-Acetylglucosamine transferase (OGT) inhibition is considered an important topic in medicinal chemistry. The involvement of O-GlcNAcylation in several important biological pathways is pointing to OGT as a potential therapeutic target. The field of OGT inhibitors drastically changed after the discovery of the 7-quinolone-4-carboxamide scaffold and its optimization to the first nanomolar OGT inhibitor: OSMI-4. While OSMI-4 is still the most potent inhibitor reported to date, its physicochemical properties are limiting its use as a potential drug candidate as well as a biological tool. In this study, we have introduced a simple modification (elongation) of the peptide part of OSMI-4 that limits the unwanted cyclisation during OSMI-4 synthesis while retaining OGT inhibitory potency. Secondly, we have kept this modified peptide unchanged while incorporating new sulfonamide UDP mimics to try to improve binding of newly designed OGT inhibitors in the UDP-binding site. With the use of computational methods, a small library of OSMI-4 derivatives was designed, prepared and evaluated that provided information about the OGT binding pocket and its specificity toward quinolone-4-carboxamides.


Assuntos
Acetilglucosamina , Difosfato de Uridina , Acetilglucosamina/química , Acetilglucosamina/metabolismo , Sítios de Ligação , Uridina , N-Acetilglucosaminiltransferases/metabolismo
20.
J Med Chem ; 66(2): 1380-1425, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36634346

RESUMO

We have developed compounds with a promising activity against Acinetobacter baumannii and Pseudomonas aeruginosa, which are both on the WHO priority list of antibiotic-resistant bacteria. Starting from DNA gyrase inhibitor 1, we identified compound 27, featuring a 10-fold improved aqueous solubility, a 10-fold improved inhibition of topoisomerase IV from A. baumannii and P. aeruginosa, a 10-fold decreased inhibition of human topoisomerase IIα, and no cross-resistance to novobiocin. Cocrystal structures of 1 in complex with Escherichia coli GyrB24 and (S)-27 in complex with A. baumannii GyrB23 and P. aeruginosa GyrB24 revealed their binding to the ATP-binding pocket of the GyrB subunit. In further optimization steps, solubility, plasma free fraction, and other ADME properties of 27 were improved by fine-tuning of lipophilicity. In particular, analogs of 27 with retained anti-Gram-negative activity and improved plasma free fraction were identified. The series was found to be nongenotoxic, nonmutagenic, devoid of mitochondrial toxicity, and possessed no ion channel liabilities.


Assuntos
Acinetobacter baumannii , Inibidores da Topoisomerase II , Humanos , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/química , Pseudomonas aeruginosa/metabolismo , Acinetobacter baumannii/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli/metabolismo , Benzotiazóis , Testes de Sensibilidade Microbiana , DNA Girase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA