Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Physiol ; 601(11): 2139-2163, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36086823

RESUMO

Low-protein (LP) diets are associated with a decreased risk of diabetes in humans, and promote leanness and glycaemic control in both rodents and humans. While the effects of an LP diet on glycaemic control are mediated by reduced levels of the branched-chain amino acids, we have observed that reducing dietary levels of the other six essential amino acids leads to changes in body composition. Here, we find that dietary histidine plays a key role in the response to an LP diet in male C57BL/6J mice. Specifically reducing dietary levels of histidine by 67% reduces the weight gain of young, lean male mice, reducing both adipose and lean mass without altering glucose metabolism, and rapidly reverses diet-induced obesity and hepatic steatosis in diet-induced obese male mice, increasing insulin sensitivity. This normalization of metabolic health was associated not with caloric restriction or increased activity, but with increased energy expenditure. Surprisingly, the effects of histidine restriction do not require the energy balance hormone Fgf21. Histidine restriction that was started in midlife promoted leanness and glucose tolerance in aged males but not females, but did not affect frailty or lifespan in either sex. Finally, we demonstrate that variation in dietary histidine levels helps to explain body mass index differences in humans. Overall, our findings demonstrate that dietary histidine is a key regulator of weight and body composition in male mice and in humans, and suggest that reducing dietary histidine may be a translatable option for the treatment of obesity. KEY POINTS: Protein restriction (PR) promotes metabolic health in rodents and humans and extends rodent lifespan. Restriction of specific individual essential amino acids can recapitulate the benefits of PR. Reduced histidine promotes leanness and increased energy expenditure in male mice. Reduced histidine does not extend the lifespan of mice when begun in midlife. Dietary levels of histidine are positively associated with body mass index in humans.


Assuntos
Histidina , Magreza , Masculino , Humanos , Animais , Camundongos , Idoso , Histidina/metabolismo , Camundongos Endogâmicos C57BL , Dieta , Obesidade/metabolismo , Proteínas , Metabolismo Energético
2.
Cell Metab ; 34(2): 209-226.e5, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35108511

RESUMO

Low-protein diets promote metabolic health in humans and rodents. Despite evidence that sex and genetic background are key factors in the response to diet, most protein intake studies examine only a single strain and sex of mice. Using multiple strains and both sexes of mice, we find that improvements in metabolic health in response to reduced dietary protein strongly depend on sex and strain. While some phenotypes were conserved across strains and sexes, including increased glucose tolerance and energy expenditure, we observed high variability in adiposity, insulin sensitivity, and circulating hormones. Using a multi-omics approach, we identified mega-clusters of differentially expressed hepatic genes, metabolites, and lipids associated with each phenotype, providing molecular insight into the differential response to protein restriction. Our results highlight the importance of sex and genetic background in the response to dietary protein level, and the potential importance of a personalized medicine approach to dietary interventions.


Assuntos
Dieta com Restrição de Proteínas , Resistência à Insulina , Animais , Metabolismo Energético/genética , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Patrimônio Genético , Resistência à Insulina/genética , Fígado/metabolismo , Masculino , Camundongos
3.
Cell Metab ; 33(5): 905-922.e6, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33887198

RESUMO

Low-protein diets promote metabolic health in rodents and humans, and the benefits of low-protein diets are recapitulated by specifically reducing dietary levels of the three branched-chain amino acids (BCAAs), leucine, isoleucine, and valine. Here, we demonstrate that each BCAA has distinct metabolic effects. A low isoleucine diet reprograms liver and adipose metabolism, increasing hepatic insulin sensitivity and ketogenesis and increasing energy expenditure, activating the FGF21-UCP1 axis. Reducing valine induces similar but more modest metabolic effects, whereas these effects are absent with low leucine. Reducing isoleucine or valine rapidly restores metabolic health to diet-induced obese mice. Finally, we demonstrate that variation in dietary isoleucine levels helps explain body mass index differences in humans. Our results reveal isoleucine as a key regulator of metabolic health and the adverse metabolic response to dietary BCAAs and suggest reducing dietary isoleucine as a new approach to treating and preventing obesity and diabetes.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Dieta , Isoleucina/metabolismo , Valina/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Índice de Massa Corporal , Dieta/veterinária , Metabolismo Energético , Fatores de Crescimento de Fibroblastos/deficiência , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Fígado/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Obesidade/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
4.
Elife ; 92020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32720643

RESUMO

Inhibition of mTOR (mechanistic Target Of Rapamycin) signaling by rapamycin promotes healthspan and longevity more strongly in females than males, perhaps because inhibition of hepatic mTORC2 (mTOR Complex 2) specifically reduces the lifespan of males. Here, we demonstrate using gonadectomy that the sex-specific impact of reduced hepatic mTORC2 is not reversed by depletion of sex hormones. Intriguingly, we find that ovariectomy uncouples lifespan from metabolic health, with ovariectomized females having improved survival despite paradoxically having increased adiposity and decreased control of blood glucose levels. Further, ovariectomy unexpectedly promotes midlife survival of female mice lacking hepatic mTORC2, significantly increasing the survival of those mice that do not develop cancer. In addition to identifying a sex hormone-dependent role for hepatic mTORC2 in female longevity, our results demonstrate that metabolic health is not inextricably linked to lifespan in mammals, and highlight the importance of evaluating healthspan in mammalian longevity studies.


Assuntos
Envelhecimento/fisiologia , Castração/efeitos adversos , Hormônios Esteroides Gonadais/metabolismo , Longevidade/fisiologia , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Ovariectomia/efeitos adversos , Transdução de Sinais/fisiologia , Animais , Humanos , Fígado/enzimologia , Masculino , Camundongos , Modelos Animais , Fatores Sexuais
5.
Mol Cell ; 78(2): 210-223.e8, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32208170

RESUMO

S-adenosylmethionine (SAM) is the methyl-donor substrate for DNA and histone methyltransferases that regulate epigenetic states and subsequent gene expression. This metabolism-epigenome link sensitizes chromatin methylation to altered SAM abundance, yet the mechanisms that allow organisms to adapt and protect epigenetic information during life-experienced fluctuations in SAM availability are unknown. We identified a robust response to SAM depletion that is highlighted by preferential cytoplasmic and nuclear mono-methylation of H3 Lys 9 (H3K9) at the expense of broad losses in histone di- and tri-methylation. Under SAM-depleted conditions, H3K9 mono-methylation preserves heterochromatin stability and supports global epigenetic persistence upon metabolic recovery. This unique chromatin response was robust across the mouse lifespan and correlated with improved metabolic health, supporting a significant role for epigenetic adaptation to SAM depletion in vivo. Together, these studies provide evidence for an adaptive response that enables epigenetic persistence to metabolic stress.


Assuntos
Metilação de DNA/genética , Heterocromatina/genética , Metaboloma/genética , S-Adenosilmetionina/metabolismo , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Citoplasma/genética , Citoplasma/metabolismo , Epigênese Genética/genética , Regulação da Expressão Gênica/genética , Células HCT116 , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Humanos , Metionina/genética , Camundongos , Processamento de Proteína Pós-Traducional/genética , Proteômica/métodos
6.
Cell Rep ; 29(1): 236-248.e3, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31577953

RESUMO

Calorie restriction (CR) extends the healthspan and lifespan of diverse species. In mammals, a broadly conserved metabolic effect of CR is improved insulin sensitivity, which may mediate the beneficial effects of a CR diet. This model has been challenged by the identification of interventions that extend lifespan and healthspan yet promote insulin resistance. These include rapamycin, which extends mouse lifespan yet induces insulin resistance by disrupting mTORC2 (mechanistic target of rapamycin complex 2). Here, we induce insulin resistance by genetically disrupting adipose mTORC2 via tissue-specific deletion of the mTORC2 component Rictor (AQ-RKO). Loss of adipose mTORC2 blunts the metabolic adaptation to CR and prevents whole-body sensitization to insulin. Despite this, AQ-RKO mice subject to CR experience the same increase in fitness and lifespan on a CR diet as wild-type mice. We conclude that the CR-induced improvement in insulin sensitivity is dispensable for the effects of CR on fitness and longevity.


Assuntos
Adiposidade/fisiologia , Resistência à Insulina/fisiologia , Insulina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Adiposidade/efeitos dos fármacos , Animais , Restrição Calórica/métodos , Ingestão de Energia/efeitos dos fármacos , Ingestão de Energia/fisiologia , Humanos , Longevidade/efeitos dos fármacos , Longevidade/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sirolimo/farmacologia
7.
Sci Rep ; 9(1): 67, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30635612

RESUMO

Obesity and type 2 diabetes are increasing in prevalence around the world, and there is a clear need for new and effective strategies to promote metabolic health. A low protein (LP) diet improves metabolic health in both rodents and humans, but the mechanisms that underlie this effect remain unknown. The gut microbiome has recently emerged as a potent regulator of host metabolism and the response to diet. Here, we demonstrate that a LP diet significantly alters the taxonomic composition of the gut microbiome at the phylum level, altering the relative abundance of Actinobacteria, Bacteroidetes, and Firmicutes. Transcriptional profiling suggested that any impact of the microbiome on liver metabolism was likely independent of the microbiome-farnesoid X receptor (FXR) axis. We therefore tested the ability of a LP diet to improve metabolic health following antibiotic ablation of the gut microbiota. We found that a LP diet promotes leanness, increases energy expenditure, and improves glycemic control equally well in mice treated with antibiotics as in untreated control animals. Our results demonstrate that the beneficial effects of a LP diet on glucose homeostasis, energy balance, and body composition are unlikely to be mediated by diet-induced changes in the taxonomic composition of the gut microbiome.


Assuntos
Aminoácidos/metabolismo , Biota , Dieta/métodos , Intestinos/microbiologia , Metabolismo , Animais , Perfilação da Expressão Gênica , Camundongos
8.
FASEB J ; 32(6): 3471-3482, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29401631

RESUMO

Obesity and diabetes are major challenges to global health, and there is an urgent need for interventions that promote weight loss. Dietary restriction of methionine promotes leanness and improves metabolic health in mice and humans. However, poor long-term adherence to this diet limits its translational potential. In this study, we develop a short-term methionine deprivation (MD) regimen that preferentially reduces fat mass, restoring normal body weight and glycemic control to diet-induced obese mice of both sexes. The benefits of MD do not accrue from calorie restriction, but instead result from increased energy expenditure. MD promotes increased energy expenditure in a sex-specific manner, inducing the fibroblast growth factor (Fgf)-21-uncoupling protein (Ucp)-1 axis only in males. Methionine is an agonist of the protein kinase mechanistic target of rapamycin complex (mTORC)-1, which has been proposed to play a key role in the metabolic response to amino acid-restricted diets. In our study, we used a mouse model of constitutive hepatic mTORC1 activity and demonstrate that suppression of hepatic mTORC1 signaling is not required for the metabolic effects of MD. Our study sheds new light on the mechanisms by which dietary methionine regulates metabolic health and demonstrates the translational potential of MD for the treatment of obesity and type 2 diabetes.-Yu, D., Yang, S. E., Miller, B. R., Wisinski, J. A., Sherman, D. S., Brinkman, J. A., Tomasiewicz, J. L., Cummings, N. E., Kimple, M. E., Cryns, V. L., Lamming, D. W. Short-term methionine deprivation improves metabolic health via sexually dimorphic, mTORC1-independent mechanisms.


Assuntos
Metabolismo Energético , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Metionina/deficiência , Obesidade/metabolismo , Caracteres Sexuais , Animais , Restrição Calórica , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Masculino , Camundongos , Obesidade/dietoterapia , Obesidade/patologia , Proteína Desacopladora 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...