Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Neurosci ; 59(12): 3403-3421, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38666628

RESUMO

Joint action (JA) is a continuous process of motor co-regulation based on the integration of contextual (top-down) and kinematic (bottom-up) cues from partners. The fine equilibrium between excitation and inhibition in sensorimotor circuits is, thus, central to such a dynamic process of action selection and execution. In a bimanual task adapted to become a unimanual JA task, the participant held a bottle (JA), while a confederate had to reach and unscrew either that bottle or another stabilized by a mechanical clamp (No_JA). Prior knowledge was manipulated in each trial such that the participant knew (K) or not (No_K) the target bottle in advance. Online transcranial magnetic stimulation (TMS) was administered at action-relevant landmarks to explore corticospinal excitability (CSE) and inhibition (cortical silent period [cSP]). CSE was modulated early on before the action started if prior information was available. In contrast, cSP modulation emerged later during the reaching action, regardless of prior information. These two indexes could thus reflect the concurrent elaboration of contextual priors (top-down) and the online sampling of partner's kinematic cues (bottom-up). Furthermore, participants selected either one of two possible behavioural strategies, preferring early or late force exertion on the bottle. One translates into a reduced risk of motor coordination failure and the other into reduced metabolic expenditure. Each strategy was characterised by a specific excitatory/inhibitory profile. In conclusion, the study of excitatory/inhibitory balance paves the way for the neurophysiological determination of individual differences in the combination of top-down and bottom-up processing during JA coordination.


Assuntos
Potencial Evocado Motor , Desempenho Psicomotor , Estimulação Magnética Transcraniana , Humanos , Masculino , Feminino , Estimulação Magnética Transcraniana/métodos , Adulto , Desempenho Psicomotor/fisiologia , Potencial Evocado Motor/fisiologia , Adulto Jovem , Individualidade , Córtex Motor/fisiologia , Inibição Neural/fisiologia , Tratos Piramidais/fisiologia , Fenômenos Biomecânicos/fisiologia
2.
Sci Rep ; 14(1): 4662, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409187

RESUMO

Acting in concert with others, a key aspect of our social life, requires behavioral coordination between persons on multiple timescales. When zooming in on the kinematic properties of movements, it appears that small speed fluctuations, called submovements, are embedded within otherwise smooth end-point trajectories. Submovements, by occurring at a faster timescale than that of movements, offer a novel window upon the functional relationship between distinct motor timescales. In this regard, it has previously been shown that when partners visually synchronize their movements, they also coordinate the timing of their submovement by following an alternated pattern. However, it remains unclear whether the mechanisms behind submovement coordination are domain-general or specific to the visual modality, and whether they have relevance for interpersonal coordination also at the scale of whole movements. In a series of solo and dyadic tasks, we show that submovements are also present and coordinated across partners when sensorimotor interactions are mediated by auditory feedback only. Importantly, the accuracy of task-instructed interpersonal coordination at the movement level correlates with the strength of submovement coordination. These results demonstrate that submovement coordination is a potentially fundamental mechanism that participates in interpersonal motor coordination regardless of the sensory domain mediating the interaction.


Assuntos
Movimento , Desempenho Psicomotor , Fenômenos Biomecânicos
3.
J Neurophysiol ; 131(3): 480-491, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38323331

RESUMO

The human brain tracks available speech acoustics and extrapolates missing information such as the speaker's articulatory patterns. However, the extent to which articulatory reconstruction supports speech perception remains unclear. This study explores the relationship between articulatory reconstruction and task difficulty. Participants listened to sentences and performed a speech-rhyming task. Real kinematic data of the speaker's vocal tract were recorded via electromagnetic articulography (EMA) and aligned to corresponding acoustic outputs. We extracted articulatory synergies from the EMA data with principal component analysis (PCA) and employed partial information decomposition (PID) to separate the electroencephalographic (EEG) encoding of acoustic and articulatory features into unique, redundant, and synergistic atoms of information. We median-split sentences into easy (ES) and hard (HS) based on participants' performance and found that greater task difficulty involved greater encoding of unique articulatory information in the theta band. We conclude that fine-grained articulatory reconstruction plays a complementary role in the encoding of speech acoustics, lending further support to the claim that motor processes support speech perception.NEW & NOTEWORTHY Top-down processes originating from the motor system contribute to speech perception through the reconstruction of the speaker's articulatory movement. This study investigates the role of such articulatory simulation under variable task difficulty. We show that more challenging listening tasks lead to increased encoding of articulatory kinematics in the theta band and suggest that, in such situations, fine-grained articulatory reconstruction complements acoustic encoding.


Assuntos
Percepção da Fala , Humanos , Fala , Acústica da Fala , Acústica , Idioma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA