Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 128(5): 1241-1255, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38285636

RESUMO

Some features of the human nervous system can be mimicked not only through software or hardware but also through liquid solutions of chemical systems maintained under out-of-equilibrium conditions. We describe the possibility of exploiting a thin layer of the Belousov-Zhabotinsky (BZ) reaction as a surrogate for the cochlea for sensing acoustic frequencies. Experiments and simulations demonstrate that, as in the human ear where the cochlea transduces the mechanical energy of the acoustic frequencies into the electrochemical energy of neural action potentials and the basilar membrane originates topographic representations of sounds, our bioinspired chemoacoustic system, based on the BZ reaction, gives rise to spatiotemporal patterns as the representation of distinct acoustic bands through transduction of mechanical energy into chemical energy. Acoustic frequencies in the range 10-2000 Hz are partitioned into seven distinct bands based on three attributes of the emerging spatiotemporal patterns: (1) the types and frequencies of the chemical waves, (2) their velocities, and (3) the Faraday waves' wavelengths.


Assuntos
Acústica , Cóclea , Humanos , Cóclea/fisiologia , Software
2.
Plants (Basel) ; 12(12)2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37375989

RESUMO

Among the cucurbit-infecting viruses, watermelon mosaic virus (WMV) and zucchini yellow mosaic virus (ZYMV) (Potyvirus: Potyviridae) are responsible for severe symptoms on cucumber, melon, watermelon, and zucchini cultivations worldwide. In this study, reverse transcription real-time PCR (real-time RT-PCR) and droplet-digital PCR (RT-ddPCR) assays targeting the coat protein (CP) genes of WMV and ZYMV were developed and validated according to the international standards of plant pest diagnosis (EPPO PM 7/98 (5)). First, the diagnostic performance of WMV-CP and ZYMV-CP real-time RT-PCRs was evaluated, and the assays displayed an analytical sensitivity of 10-5 and 10-3, respectively. The tests also showed an optimal repeatability, reproducibility and analytical specificity, and were reliable for the virus detection in naturally infected samples and across a wide range of cucurbit hosts. Based on these results, the real-time RT-PCR reactions were adapted to set up RT-ddPCR assays. These were the first RT-ddPCR assays aiming at the detection and quantification of WMV and ZYMV and showed a high sensitivity, being able to detect until 9 and 8 copies/µL of WMV or ZYMV, respectively. The RT-ddPCRs allowed the direct estimation of the virus concentrations and opened to a broad range of applications in disease management, such as the evaluation of partial resistance in breeding processes, identification of antagonistic/synergistic events, and studies on the implementation of natural compounds in the integrated management strategies.

3.
Front Microbiol ; 13: 840893, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35547120

RESUMO

In the last decades, the interest in biological activity of natural compounds has been growing. In plant protection, essential oils have been reported to exhibit antiviral, antimycotic, and antiparasitic activities, and are regarded as promising for the formulation of safe antimicrobial agents. Attention has also been focused on hydrosols, the by-products of hydro-distillation of essential oils. Their production is easy, fast, and cheap, and they seem to arise less concern for human health than essential oils. Plant viruses represent a major concern for agricultural crops since no treatment compound is available for virus control. This work was aimed at evaluating the antiphytoviral effectiveness of treatments with three essential oils and corresponding hydrosols extracted from Origanum vulgare, Thymus vulgaris, and Rosmarinus officinalis on Cucurbita pepo plants infected by zucchini yellow mosaic virus or tomato leaf curl New Delhi virus. Treatments were applied either concurrently or after virus inoculation to ascertain an inhibition or curative activity, respectively. Symptoms were observed and samplings were performed weekly. Virus titer and expression levels of phenylalanine ammonia lyase gene (PAL) were measured on treated and untreated infected plants by real-time PCR. PAL gene plays an important role in plant defense response as it is involved in tolerance/resistance to phytopathogens. Results indicated that treatments were effective against tomato leaf curl New Delhi virus whether applied simultaneously with the inoculation or after. A major inhibition was observed with O. vulgare essential oil and hydrosol, resulting in 10-4-fold decrease of virus titer 3 weeks after treatment. Curative activity gave maximum results with all three essential oils and T. vulgaris and R. officinalis hydrosols, recording from 10-2-fold decrease to virus not detected 4 weeks after treatment. An induction of PAL gene expression was recorded at 12 d.p.i. and then was restored to the levels of untreated control. This allows to hypothesize an early plant defense response to virus infection, possibly boosted by treatments. Plant extracts' composition was characterized by gas chromatography-mass spectrometry. Phenols were largely main components of O. vulgare and T. vulgaris extracts (carvacrol and thymol, respectively), while extracts from R. officinalis were based on monoterpene hydrocarbons (essential oil) and oxygenated monoterpenes (hydrosol).

4.
Front Microbiol ; 13: 862075, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615512

RESUMO

Biochar is a rich carbon product obtained by pyrolysis of biomass under a limited supply of oxygen. It is composed mainly of aromatic molecules, but its agronomic value is hard to evaluate and difficult to predict due to its great variable characteristics depending on the type of starting biomass and the conditions of pyrolysis. Anyway, it could be used as soil amendment because it increases the soil fertility of acidic soils, increases the agricultural productivity, and seems to provide protection against some foliar and soilborne diseases. In this study, the effects of biochar, obtained from olive pruning, have been evaluated on tomato seedlings growth and on their response to systemic agents' infection alone or added with beneficial microorganisms (Bacillus spp. and Trichoderma spp.). First, experimental data showed that biochar seems to promote the development of the tomato seedlings, especially at concentrations ranging from 1 to 20% (w/w with peat) without showing any antimicrobial effects on the beneficial soil bacteria at the tomato rhizosphere level and even improving their growth. Thus, those concentrations were used in growing tomato plants experimentally infected with tomato spotted wilt virus (TSWV) and potato spindle tuber viroid (PSTVd). The biochar effect was estimated by evaluating three parameters, namely, symptom expression, number of infected plants, and pathogen quantification, using RT-qPCR technique and -ΔΔCt analysis. Biochar at 10-15% and when added with Trichoderma spp. showed that it reduces the replication of PSTVd and the expression of symptoms even if it was not able to block the start of infection. The results obtained on TSWV-infected plants suggested that biochar could contribute to reducing both infection rate and virus replication. For systemic viral agents, such as PSTVd and TSWV, there are no curative control methods, and therefore, the use of prevention means, as can be assumed the use biochar, for example, in the nursery specialized in horticultural crops, can be of great help. These results can be an encouraging starting point to introduce complex biochar formulates among the sustainable managing strategies of plant systemic diseases.

5.
Pathogens ; 11(2)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35215150

RESUMO

In 2020, a test performance study (TPS) for the specific detection of tomato brown rugose fruit virus (ToBRFV) was organized in the frame of the H2020 Valitest project. Since no validated tests were available, all the protocols reported in the literature were at first screened, performing preliminary studies in accordance with the EPPO standard PM 7/98 (4). Five molecular tests, two conventional RT-PCR and three real-time RT-PCR were found to be suitable and were included in the TPS. Thirty-four laboratories from 18 countries worldwide took part in TPS, receiving a panel of 22 blind samples. The panel consisted of sap belonging to symptomatic or asymptomatic leaves of Solanum lycopersicum and Capsicum annuum. The results returned by each laboratory were analyzed and diagnostic parameters were assessed for each test: reproducibility, repeatability, analytical sensitivity, diagnostic sensitivity and diagnostic specificity. All the evaluated tests resulted in being reliable in detecting ToBRFV and were included in an EPPO Standard PM 7/146-Diagnostics.

6.
Insects ; 12(6)2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-34199806

RESUMO

Bemisia tabaci is a key pest of horticultural, fibre and ornamental crops worldwide, primarily as a vector of plant viruses. In Italy, B. tabaci has established since the 1980s-1990s in southern regions as well as in Sicily and Sardinia. Recent reports of infestations in some areas of central Italy prompted a new survey to assess the whitefly distribution in the country as well as to update the species and haplotype composition of the populations present in southern Italy and in the main islands. The survey confirmed that B. tabaci is nowadays established in central Italy even at more northern latitudes than those noticed before. Most of the specimens collected throughout the country belonged to the Mediterranean (MED) species. The MEDQ1 and Q2 haplogroups were prevailing in open-field and greenhouse cultivations, respectively, except in Sardinia where only Q1 specimens were found on a wide range of crops and weeds. Population genetics analyses showed that several MEDQ1 haplotypes currently occur in Italy and their distribution is unrelated to evident temporal and geographic trends, except for a new genetic variant which seems to have originated in Sardinia. The MED species is known to better adapt to insecticide treatments and high temperatures, and its northward spread in Italy may have been favoured by the intensive agricultural practices and steady increase in both winter and summer temperatures occurring in the last few decades. The extensive presence of B. tabaci in Italy proves that a strict surveillance for possible new outbreaks of whitefly-transmitted viruses should be addressed to a range of sites that are expanding northwards.

7.
Arch Virol ; 166(9): 2619-2621, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34213637

RESUMO

The genome of a new carlavirus isolate from asymptomatic wild Capparis spinosa L. plants in Sicily was sequenced via high-throughput sequencing (HTS) and 5'/3' RACE experiments. The complete genomic sequence was found to be 8,280 nt in length, excluding the poly(A) tail, and contained five putative open reading frames (ORFs). Molecular characterization revealed a close relationship to caper latent virus (CapLV), with 87% and 90% nucleotide sequence identity to available partial sequences of the ORFs encoding the replicase and coat protein of that virus. According to the molecular criteria for species demarcation, which is based on the ORF-1- and ORF-5-encoded proteins, the virus characterized in this study could be considered a variant of CapLV, and we have thus designated it as CapLV-W.


Assuntos
Capparis/virologia , Carlavirus/classificação , Carlavirus/genética , Carlavirus/isolamento & purificação , Doenças das Plantas/virologia , Sequenciamento Completo do Genoma , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta , Filogenia , RNA Viral/genética , Sicília
8.
Arch Virol ; 165(4): 937-946, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32185511

RESUMO

Watermelon mosaic virus (WMV; genus Potyvirus, family Potyviridae) is responsible for serious cucurbit yield losses worldwide. Different WMV genetic groups have been characterized so far. Among these, the "classical" (CL) group has been present in the Mediterranean basin for 40 years, whereas the "emergent" (EM) group includes isolates that are associated with more-severe symptoms observed since 2000. Information on the spatial and temporal evolution of WMV isolates in Italy is currently sparse. In this study, 39 WMV isolates samples collected in different regions over the last two decades were analysed at two different genomic regions that are known to be highly variable and contain recombination breakpoints. Most of the isolates collected between 2002 and 2009 were found to belong to the CL group, whereas the isolates from 2012 onwards were classified as EM, indicating that EM isolates have progressively displaced the CL population in Italy. Although genetic variability was observed within both CL and EM groups and recombinant isolates were detected, no positive selection or haplotype geographic structure were inferred. This suggest that the shift from CL to EM populations was likely due to multiple introductions of EM isolates in different regions of Italy rather than from genetic differentiation of local populations. The progressive increase in prevalence of the highly virulent EM populations is a serious concern because of their symptom severity, and the presence of multiple EM variants that include recombinants necessitates new efforts to develop durable control strategies.


Assuntos
Cucurbita/virologia , Doenças das Plantas/virologia , Potyvirus/genética , Potyvirus/isolamento & purificação , Produtos Agrícolas/virologia , Variação Genética , Itália , Filogenia , Potyvirus/classificação
9.
J Sci Food Agric ; 100(8): 3418-3427, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32166770

RESUMO

BACKGROUND: Plant viral infections induce changes in metabolic components in the host plant, with potential effects on compositional, organoleptic and storability features of agricultural products. Identification of modulated metabolites may provide clues concerning pathways implementing responses in plant-pathogen interactions. A time course study of metabolic fingerprinting of onion yellow dwarf virus (OYDV)-infected versus healthy 'Rossa di Tropea' onion bulbs was performed using proton high-resolution magic angle spinning nuclear magnetic resonance (1 H HR-MAS NMR) and ultra-performance liquid chromatography (UPLC), providing an overview of the metabolic state of the bulb in response to OYDV infection during storage. RESULTS: Metabolites accumulated/depleted upon infection were identified, belonging to flavonoid, saccharide, amino acid and organic acid classes. A decrease in quercetin glucosides content and antioxidant activity was observed in infected bulbs; some amino acids (Arg, Asn, Phe, Val) accumulated, while others were depleted (Leu); for some metabolites, a bimodal time-course was observed during storage (Glc, Lys). Virus interference on metabolic pathways, and the effects of the metabolic shift on edible product storability, organoleptic and nutritional quality were discussed. CONCLUSIONS: OYDV infection induces a metabolic shift in 'Rossa di Tropea' onion during bulb storage, involving several pathways and affecting storability and organoleptic and nutritional quality of bulbs at marketable stage. © 2020 Society of Chemical Industry.


Assuntos
Cebolas/metabolismo , Cebolas/virologia , Doenças das Plantas/virologia , Potyvirus/fisiologia , Antioxidantes/química , Antioxidantes/metabolismo , Flavonoides/química , Flavonoides/metabolismo , Armazenamento de Alimentos , Espectroscopia de Ressonância Magnética , Valor Nutritivo , Cebolas/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/virologia
10.
J Virol Methods ; 271: 113680, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31202851

RESUMO

Onion yellow dwarf virus (OYDV) is one of the most important viral pathogens of onion. In particular, on 'Rossa di Tropea' onion, granted with Protected Geographical Indication (PGI) trademarks, this pathogen represents the most limiting biotic stress in terms of spread, severity of symptoms and damage, and its detection is necessary to preserve high quality standards and avoid yield losses. A reverse transcription-loop mediated isothermal amplification (RT-LAMP) assay was developed for detection of OYDV. The specificity, sensitivity, repeatability and reproducibility of the assay were validated according to EPPO standard PM7/98 (2). Diagnostic specificity, diagnostic sensitivity and diagnostic accuracy were determined in both leaf and bulb tissues. To enhance the feasibility of a LAMP-based method for field diagnosis, several nucleic acid extraction methods were compared to simplify sample preparation. The results showed the reliability of the method for OYDV detection, with a limit of detection (LOD) comparable to real time reverse transcription polymerase chain reaction (RT-qPCR). The ease of sample preparation, and the more than acceptable LOD, indicated that the RT-LAMP assay could be used in plant pathology laboratories with limited facilities and resources, as well as directly in the field. This work was carried out in the frame of "SI.ORTO" project.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Potyvirus/isolamento & purificação , Transcrição Reversa , Temperatura , Primers do DNA/genética , Limite de Detecção , Cebolas/virologia , Folhas de Planta/virologia , Raízes de Plantas/virologia , RNA Viral/isolamento & purificação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
Adv Virus Res ; 84: 345-65, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22682173

RESUMO

The current knowledge on viruses infecting asparagus (Asparagus officinalis) is reviewed. Over half a century, nine virus species belonging to the genera Ilarvirus, Cucumovirus, Nepovirus, Tobamovirus, Potexvirus, and Potyvirus have been found in this crop. The potyvirus Asparagus virus 1 (AV1) and the ilarvirus Asparagus virus 2 (AV2) are widespread and negatively affect the economic life of asparagus crops reducing yield and increasing the susceptibility to biotic and abiotic stress. The main properties and epidemiology of AV1 and AV2 as well as diagnostic techniques for their detection and identification are described. Minor viruses and control are briefly outlined.


Assuntos
Asparagus/virologia , Doenças das Plantas/virologia , Vírus de Plantas/patogenicidade , Região do Mediterrâneo
12.
J Virol Methods ; 168(1-2): 133-40, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20470828

RESUMO

A DNA microarray chip was developed for screening 10 major economically important tomato viruses from infected plants using "Combimatrix" platform 40-mer oligonucleotide probes. A total of 279 oligonucleotide virus probes were specific for simultaneous multiple detection, identification, differentiation and/or genotyping of each of the following tomato RNA viruses and/or strains and a virus satellite: Cucumber mosaic virus, Cucumber mosaic virus satellite RNA, Tomatoinfectiouschlorosisvirus, Tomato chlorosisvirus, Tomato spotted wilt virus, Pepino mosaic virus, Potato virus Y, Tobacco mosaic virus and Tomato mosaic virus. This selection included both positive and negative single-stranded RNA viruses. The single-stranded DNA viruses, Tomato yellow leaf curl virus and Tomato yellow leaf curl Sardinia virus were detected but were not differentiated using probes designed from their coat protein genes. A sectored oligonucleotide microarray chip containing four sets of 2000 features (4 x 2 K) was designed. In this way, four samples were tested simultaneously in a hybridization event and 16 samples were analyzed by re-using the chip four times. The hybrids had low background signals. Many of the 40-mer oligonucleotide probes were specific for the detection and identification of each RNA viral species, RNA viral satellite and genotyping strains of Cucumber mosaic virus, Pepino mosaic virus and Potato virus Y. Universal probes were developed for strains of the last three viruses and also for the genus Tobamovirus which includes both Tobacco mosaicvirus and Tomato mosaic virus.


Assuntos
Vírus de DNA/isolamento & purificação , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Doenças das Plantas/virologia , Vírus de Plantas/isolamento & purificação , Vírus de RNA/isolamento & purificação , Solanum lycopersicum/virologia , Virologia/métodos , Vírus de DNA/classificação , Vírus de DNA/genética , Genótipo , Vírus de Plantas/classificação , Vírus de Plantas/genética , Vírus de RNA/classificação , Vírus de RNA/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...