Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(14): 3772-3778, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38552646

RESUMO

Self-assembled quantum dots (QDs) are potential candidates for photoelectric and photovoltaic devices, because of their discrete energy levels. The characterization of QDs at the atomic level using a multimodal approach is crucial to improving device performance because QDs are nanostructures with highly correlated structural parameters. In this study, scanning transmission electron microscopy, geometric phase analysis, and atom probe tomography were employed to characterize structural parameters such as the shape, strain, and composition of self-assembled InAs-QDs with InGaAlAs spacer layers. The measurements revealed characteristic AlAs-rich regions above the QDs and InAs-rich regions surrounding the QD columns, which can be explained by the relationship between the effect of strain and surface curvature around the QD. The methodology described in this study accelerates the development of future QD devices because its multiple perspectives reveal phenomena such as atomic-scale segregations and allow for more detailed discussions of the mechanisms of these phenomena.

3.
Nat Nanotechnol ; 18(5): 521-528, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36941362

RESUMO

Mobile charge carriers are essential components in high-performance, nano-engineered semiconductor devices. Employing charge carriers confined to heterointerfaces, the so-called two-dimensional electron gas, is essential for improving device performance. The real-space visualization of a two-dimensional electron gas at the nanometre scale is desirable. However, it is challenging to accomplish by means of electron microscopy due to an unavoidable strong diffraction contrast formation at the heterointerfaces. We performed direct, nanoscale electric field imaging across a GaN-based semiconductor heterointerface using differential phase contrast scanning transmission electron microscopy by suppressing diffraction contrasts. For both nearly the lattice-matched GaN/Al0.81In0.19N interface and pseudomorphic GaN/Al0.88In0.12N interface, the extracted quantitative electric field profiles show excellent agreement with profiles predicted using Poisson simulation. Furthermore, we used the electric field profiles to quantify the density and distribution of the two-dimensional electron gas across the heterointerfaces with nanometre precision. This study is expected to guide the real-space characterization of local charge carrier density and distribution in semiconductor devices.

4.
Nano Lett ; 22(17): 6930-6935, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36048741

RESUMO

The compositional and structural investigations of threading dislocations (TDs) in InGaN/GaN multiple quantum wells were carried out using correlative transmission electron microscopy (TEM) and atom probe tomography (APT). The correlative TEM/APT analysis on the same TD reveals that the indium atoms are diffused along the TD and its concentration decreases with distance from the InGaN layer. On the basis of the results, we directly observed that the indium atoms originating from the InGaN layer diffuse toward the epitaxial GaN surface through the TD, and it is considered to have occurred via the pipe diffusion mechanism induced by strain energy relaxation.

5.
Ultramicroscopy ; 238: 113538, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35567966

RESUMO

Differential phase contrast (DPC) in scanning transmission electron microscopy can be used to visualize electric field distributions within specimens in real space. However, for electric field mapping in crystalline specimens, the concomitant diffraction contrast is seriously problematic. In particular, for heterostructures with large lattice distortions, such as GaN-based semiconductor devices, the diffraction contrast cannot be reduced using conventional methods such as DPC image acquisition under off-axis conditions. In the present study, the electric field imaging of heterostructures is shown to suppress the diffraction contrast by averaging multiple DPC signals, obtained under various beam-tilt conditions near the zone axis. The remaining diffraction contrast was quantitatively estimated through simulations. This technique was demonstrated to enable the quantitative evaluation of electric field distributions across GaN/AlGaN multi-heterostructures, with errors possibly attributed to the residual diffraction contrast.

6.
PLoS One ; 15(9): e0239933, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32997718

RESUMO

Crystal structure prediction has been one of the fundamental and challenging problems in materials science. It is computationally exhaustive to identify molecular conformations and arrangements in organic molecular crystals due to complexity in intra- and inter-molecular interactions. From a geometrical viewpoint, specific types of organic crystal structures can be characterized by ellipsoid packing. In particular, we focus on aromatic systems which are important for organic semiconductor materials. In this study, we aim to estimate the ellipsoidal molecular shapes of such crystals and predict them from single molecular descriptors. First, we identify the molecular crystals with molecular centroid arrangements that correspond to affine transformations of four basic cubic lattices, through topological analysis of the dataset of crystalline polycyclic aromatic molecules. The novelty of our method is that the topological data analysis is applied to arrangements of molecular centroids intead of those of atoms. For each of the identified crystals, we estimate the intracrystalline molecular shape based on the ellipsoid packing assumption. Then, we show that the ellipsoidal shape can be predicted from single molecular descriptors using a machine learning method. The results suggest that topological characterization of molecular arrangements is useful for structure prediction of organic semiconductor materials.


Assuntos
Modelos Moleculares , Hidrocarbonetos Policíclicos Aromáticos/química , Cristalização , Conformação Molecular
7.
ACS Nano ; 12(9): 8875-8881, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30074756

RESUMO

Probing the charge density distributions in materials at atomic scale remains an extremely demanding task, particularly in real space. However, recent advances in differential phase contrast-scanning transmission electron microscopy (DPC-STEM) bring this possibility closer by directly visualizing the atomic electric field. DPC-STEM at atomic resolutions measures how a sub-angstrom electron probe passing through a material is affected by the atomic electric field, the field between the nucleus and the surrounding electrons. Here, we perform a fully quantitative analysis which allows us to probe the charge density distributions inside atoms, including both the positive nuclear and the screening electronic charges, with subatomic resolution and in real space. By combining state-of-the-art DPC-STEM experiments with advanced electron scattering simulations we are able to map the spatial distribution of the electron cloud within individual atomic columns. This work constitutes a crucial step toward the direct atomic scale determination of the local charge redistributions and modulations taking place in materials systems.

8.
Adv Mater ; 24(8): 1117-22, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22278887

RESUMO

A method for forming organic single-crystal arrays from solution is demonstrated using an organic semiconductor, 3,9-bis(4-ethylphenyl)-peri-xanthenoxanthene (C(2) Ph-PXX). Supersaturation of C(2) Ph-PXX/tetralin solution is spatially changed by making a large difference in solvent evaporation to generate nuclei at the designated location. The method is simple to implement since it employs only a micropattern and control of the solvent vapor pressure during growth.


Assuntos
Microtecnologia/instrumentação , Compostos Orgânicos/química , Hidrodinâmica , Soluções
9.
Phys Rev Lett ; 103(14): 146102, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19905583

RESUMO

We have observed, by high-resolution cross-sectional transmission electron microscopy, the first direct evidence of polymorphic transformation in pentacene thin films deposited on silicon oxide substrates. Polymorphic transformation from the thin-film phase to the bulk phase occurred preferentially near polycrystalline grain boundaries, which exhibit concave surfaces. This process is thought to be driven by compressive stress caused by the grain boundaries. In addition to this stress, lattice mismatch between the two phases also results in structural defect formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...