Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38069033

RESUMO

The pressure to reduce mineral fertilization and the amount of pesticides used has become a factor limiting production growth, as has the elimination of many crop protection chemicals from the market. A key condition for this to be an effective form of protection is the use of varieties with higher levels of resistance. The most effective and fastest way to assist in the selection and control of pathogens is the conducting of genome-wide association studies. These are useful tools for identifying candidate genes, especially when combined with QTL mapping to map and validate loci for quantitative traits. The aim of this study was to identify new markers coupled to genes that determine maize plant resistance to fusarium head blight through the use of next-generation sequencing, association and physical mapping, and to optimize diagnostic procedures to identify selected molecular markers coupled to plant resistance to this fungal disease. As a result of field experiments and molecular analyses, molecular markers coupled to potential genes for resistance to maize ear fusariosis were selected. The newly selected markers were tested against reference genotypes. As a result of the analyses, it was found that two markers (11801 and 20607) out of the ten that were tested differentiated between susceptible and resistant genotypes. Marker number 11801 proved to be the most effective, with a specious product of 237 bp appearing for genotypes 1, 3, 5, 9 and 10. These genotypes were characterized by a field resistance of 4-6 on the 9° scale (1 being susceptible, 9 being resistant) and for all genotypes except 16 and 20, which were characterized by a field resistance of 9. In the next step, this marker will be tested on a wider population of extreme genotypes in order to use it for the preliminary selection of fusarium-resistant genotypes, and the phosphoenolpyruvate carboxylase kinase 1 gene coupled to it will be subjected to expression analysis.


Assuntos
Fusarium , Fusarium/genética , Zea mays/metabolismo , Locos de Características Quantitativas , Resistência à Doença/genética , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Tecnologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
2.
Genes (Basel) ; 14(7)2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37510281

RESUMO

The main efforts in common wheat (Triticum aestivum L.) breeding focus on yield, grain quality, and resistance to biotic and abiotic stresses. One of the major threats affecting global wheat cultivation and causing significant crop production losses are rust diseases, including leaf rust caused by a biotrophic fungus Puccinia triticina Eriks. Genetically determined resistance to leaf rust has been characterized in young plants (seedling resistance) as well as in plants at the adult plant stage. At the seedling stage, resistance is controlled vertically by major R genes, conferring a race-specific response that is highly effective but usually short-lived due to the rapid evolution of potentially virulent fungi. In mature plants, horizontal adult plant resistance (APR) was described, which provides long-term protection against multiple races of pathogens. A better understanding of molecular mechanisms underlying the function of APR genes would enable the development of new strategies for resistance breeding in wheat. Therefore, in the present study we focused on early transcriptomic responses of two major wheat APR genes, Lr34 and Lr67, and three complementary miRNAs, tae-miR9653b, tae-miR9773 and tae-miR9677b, to inoculation with P. triticina. Plant material consisted of five wheat reference varieties, Artigas, NP846, Glenlea, Lerma Rojo and TX89D6435, containing the Lr34/Yr18 and Lr67/Yr46 resistance genes. Biotic stress was induced by inoculation with fungal spores under controlled conditions in a phytotron. Plant material consisted of leaf tissue sampled before inoculation as well as 6, 12, 24 and 48 h postinoculation (hpi). The APR gene expression was quantified using real-time PCR with two reference genes, whereas miRNA was quantified using droplet digital PCR. This paper describes the resistance response of APR genes to inoculation with races of leaf rust-causing fungi that occur in central Europe. The study revealed high variability of expression profiles between varieties and time-points, with the prevalence of downregulation for APR genes and upregulation for miRNAs during the development of an early defense response. Nevertheless, despite the downregulation initially observed, the expression of Lr34 and Lr67 genes in studied cultivars was significantly higher than in a control line carrying wild (susceptible) alleles.


Assuntos
Basidiomycota , Triticum , Triticum/genética , Triticum/microbiologia , Resistência à Doença/genética , Melhoramento Vegetal , Fungos , Plântula/genética
3.
Curr Issues Mol Biol ; 45(4): 2644-2660, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37185697

RESUMO

Spectacular scientific advances in the area of molecular biology and the development of modern biotechnological tools have had a significant impact on the development of maize heterosis breeding. One technology based on next-generation sequencing is DArTseq. The plant material used for the research consisted of 13 hybrids resulting from the crossing of inbred maize lines. A two-year field experiment was established at two Polish breeding stations: Smolice and Lagiewniki. Nine quantitative traits were observed: cob length, cob diameter, core length, core diameter, number of rows of grain, number of grains in a row, mass of grain from the cob, weight of one thousand grains, and yield. The isolated DNA was subjected to DArTseq genotyping. Association mapping was performed using a method based on the mixed linear model. A total of 81602 molecular markers (28571 SNPs and 53031 SilicoDArTs) were obtained as a result of next-generation sequencing. Out of 81602, 15409 (13850 SNPs and 1559 SilicoDArTs) were selected for association analysis. The 105 molecular markers (8 SNPs and 97 SilicoDArTs) were associated with the heterosis effect of at least one trait in at least one environment. A total of 186 effects were observed. The number of statistically significant relationships between the molecular marker and heterosis effect varied from 8 (for cob length) and 9 (for yield) to 42 (for the number of rows of grain). Of particular note were three markers (2490222, 2548691 and 7058267), which were significant in 17, 8 and 6 cases, respectively. Two of them (2490222 and 7058267) were associated with the heterosis effects of yield in three of the four environments.

4.
Toxins (Basel) ; 15(2)2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36828417

RESUMO

Rice is a widely consumed food worldwide; however, it can be a source of pollutants, such as potentially toxic elements (PTEs), mycotoxins, and pesticides. Sixty rice samples imported from Pakistan (PAK), India (IND), and Thailand (THAI), as well as domestic Iranian (IRN) rice, were collected from Bushehr, Iran, and investigated for the contamination of PTEs, including arsenic (As), lead (Pb), cadmium (Cd), and nickel (Ni); pesticides, including chlorpyrifos, trichlorfon, diazinon, fenitrothion, and chlorothalonil; mycotoxins, such as aflatoxin B1 (AFB1), zearalenone (ZEN), ochratoxin A (OTA), and deoxynivalenol (DON); and molds. Estimated daily intake (EDI) and hazard quotient (HQ) of pollutants and hazard index (HI) and incremental lifetime cancer risk (ILCR) of rice types for the Iranian adult population were calculated. The content of PTEs in Iranian rice was not higher than Iran's national standard limits. In contrast, other types of rice (imported) had at least one PTE above the permissible level. OTA content was below the detection limit, and all other mycotoxins were within the allowable range in all rice types. Thai rice was the only group without pesticides. The HI order of rice types was as follows: HIPAK = 2.1 > HIIND = 1.86 > HIIRN = 1.01 > HITHAI = 0.98. As was the biggest contributor to the HI of Iranian and Thai rice, and diazinon in the HI of Pakistani and Indian rice. The calculation of ILCR confirmed that the concentrations of Ni and Pb in Pakistani and Ni and As in Indian, Thai, and Iranian rice were not acceptable in terms of lifetime carcinogenic health risks.


Assuntos
Arsênio , Poluentes Ambientais , Metais Pesados , Micotoxinas , Praguicidas , Micotoxinas/análise , Praguicidas/análise , Irã (Geográfico) , Diazinon/análise , Chumbo/análise , Arsênio/análise , Medição de Risco , Poluentes Ambientais/análise , Contaminação de Alimentos/análise , Metais Pesados/análise , Monitoramento Ambiental
5.
Plants (Basel) ; 12(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36678992

RESUMO

Among cereals, triticale (×Trititcoseale Wittmack ex A. Camus) represents a number of advantages such as high grain yield even in marginal environments, tolerance to drought, cold and acid soils, as well as lower production costs. Together with high biomass of grain and straw, triticale is also considered as an industrial energy crop. As an artificial hybrid, it has not evolved naturally, which is reflected in narrow genetic diversity causing a resistance collapse in recent years. Here, we describe a novel, synthetic tetraploid triticale, which was developed by the crossing of rye (Secale cereale L.) with einkorn wheat (Triticum monococcum spp. monococcum), which possess Sr35 stem rust resistance gene. Three subsequent generations of alloploids were obtained by chromosome doubling followed by self-pollination. The cytogenetic analyses revealed that the amphiploids possess a set of 28 chromosomes (14 of Am-genome and 14 of R-genome). The values of the most important yield-shaping traits for these tetraploid triticale form, including thousand-grain weight, plant height and stem length were higher compared to parental genotypes, as well as standard hexaploid triticale cultivars. This study shows that this tetraploid triticale genetic stock can be an interesting pre-breeding germplasm for triticale improvement or can be developed as a new alternative crop.

6.
J Appl Genet ; 64(1): 55-64, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36577933

RESUMO

Race-nonspecific resistance is a key to sustainable management of pathogens in bread wheat (Triticum aestivum L.) breeding. It is more durable compared to race-specific immunity, conferred by the major genes (R), which are often overcome by pathogens. The accumulation of the genes, which provide the resistance to a specific race of a pathogen, together with the introduction of race-non-specific resistance genes is the most effective strategy aimed at preventing the breakdown of genetically conditioned immunity. PCR markers improved the productivity and accuracy of classical plant breeding by means of marker-assisted selection (MAS). Multiplexing assays provide increased throughput, reduced reaction cost, and conservation of limited sample material, which are beneficial for breeding purposes. Here, we described the process of customizing multiplex PCR assay for the simultaneous identification of the major leaf rust resistance genes Lr19, Lr24, Lr26, and Lr38, as well as the slow rusting, race-nonspecific resistance genes: Lr34 and Lr68, in thirteen combinations. The adaptation of PCR markers for multiplex assays relied on: (1) selection of primers with an appropriate length; (2) selection of common annealing/extension temperature for given primers; and (3) PCR mixture modifications consisting of increased concentration of primers for the scanty band signals or decreased concentration of primers for the strong bands. These multiplex PCR protocols can be integrated into a marker-assisted selection of the leaf rust-resistant wheat genotypes.


Assuntos
Basidiomycota , Triticum , Triticum/genética , Marcadores Genéticos , Reação em Cadeia da Polimerase Multiplex , Genes de Plantas/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Basidiomycota/genética
7.
Genes (Basel) ; 15(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38254946

RESUMO

The main challenge of agriculture in the 21st century is the continuous increase in food production. In addition to ensuring food security, the goal of modern agriculture is the continued development and production of plant-derived biomaterials. Conventional plant breeding methods do not allow breeders to achieve satisfactory results in obtaining new varieties in a short time. Currently, advanced molecular biology tools play a significant role worldwide, markedly contributing to biological progress. The aim of this study was to identify new markers linked to candidate genes determining grain yield. Next-generation sequencing, gene association, and physical mapping were used to identify markers. An additional goal was to also optimize diagnostic procedures to identify molecular markers on reference materials. As a result of the conducted research, 19 SNP markers significantly associated with yield structure traits in maize were identified. Five of these markers (28629, 28625, 28640, 28649, and 29294) are located within genes that can be considered candidate genes associated with yield traits. For two markers (28639 and 29294), different amplification products were obtained on the electrophorograms. For marker 28629, a specific product of 189 bp was observed for genotypes 1, 4, and 10. For marker 29294, a specific product of 189 bp was observed for genotypes 1 and 10. Both markers can be used for the preliminary selection of well-yielding genotypes.


Assuntos
Melhoramento Vegetal , Zea mays , Zea mays/genética , Sequenciamento de Nucleotídeos em Larga Escala , Tecnologia , Grão Comestível/genética
8.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36499196

RESUMO

Seed vigor and seed germination are very important traits, determined by several factors including genetic and physical purity, mechanical damage, and physiological condition, characterized by maintaining a high seed vigor and stable content after storage. The search for molecular markers related to improvement in seed vigor under adverse condition is an important issue in maize breeding currently. Higher sowing quality of seeds is necessary for the development of the agriculture production and better ability to resist all kinds of adversity in the seeds' storage. Condition is a very important factor affecting the yield of plants, thanks to the construction of their vitality. Identification of molecular markers associated with seed germination and seed vigor may prove to be very important in the selection of high-yielding maize varieties. The aim of this study was to identify and select new markers for maize (SNP and SilicoDArT) linked to genes influencing the seed germination and seed vigor in inbred lines of maize (Zea mays L.). The plant material used for the research was 152 inbred maize lines. The seed germination and seed vigor were analyzed. For identification of SNP and SilicoDArT markers related to the seed germination and seed vigor, the SilicoDarT technique developed by Diversity Arrays Technology was used. The analysis of variance indicated a statistically significant differentiation between genotypes for both observed traits. Positive (r = 0.41) correlation (p < 0.001) between seed germination and seed vigor was observed. As a result of next-generation sequencing, the molecular markers SilicoDArT (53,031) and SNP (28,571) were obtained. Out of 81,602 identified SilicoDArT and SNP markers, 15,409 (1559 SilicoDArT and 13,850 SNP) were selected as a result of association mapping, which showed them to be significantly related to the analyzed traits. The 890 molecular markers were associated with seed vigor, and 1323 with seed germination. Fifty-six markers (47 SilicoDArT and nine SNP) were significant for both traits. Of these 56 markers, the 20 most significant were selected (five of these markers were significant at the level of 0.001 for seed vigor and at the level of 0.05 for seed germination, another five markers were significant at the level of 0.001 for seed germination and at the level of 0.05 for seed vigor, five markers significant at the level of 0.001 only for seed vigor and five significant at the level of 0.001 only for seed germination also selected). These markers were used for physical mapping to determine their location on the genetic map. Finally, it was found that six of these markers (five silicoDArT­2,435,784, 4,772,587, 4,776,334, 2,507,310, 25,981,291, and one SNP­2,386,217) are located inside genes, the action of which may affect both seed germination and seed vigor. These markers can be used to select genotypes with high vigor and good seed germination.


Assuntos
Sementes , Zea mays , Sementes/genética , Germinação/genética , Melhoramento Vegetal , Tecnologia
9.
Foods ; 11(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36010456

RESUMO

In this study, kiwiberry lyophilizate (KBL) was incorporated into pasta at different levels (5%, 10%, and 15% w/w). Kiwiberry fruits' characteristics (ascorbic acid, carotenoids, phenolic compounds, and antioxidant activity determination) as well as physical (cooking properties, color, microscopic structure determination, texture, and water molecular dynamics analysis by low-field NMR) and chemical analyses (proximate composition phenolic compounds composition and antioxidant activity) of KBL-enriched pasta were investigated. The replacement of semolina with KBL in the production of pasta significantly changed its culinary properties. Results showed that the addition of KBL leads to a reduction in optimal cooking time and cooking weight (47.6% and 37.3%, respectively). Additionally, a significant effect of the KBL incorporation on the color of both fresh and cooked pasta was observed. A significant reduction in the L* value for fresh (27.8%) and cooked (20.2%) pasta was found. The KBL-enriched pasta had a different surface microstructure than the control pasta and reduced firmness (on average 44.7%). Low-field NMR results have confirmed that the ingredients in kiwiberry fruit can bind the water available in fresh pasta. The heat treatment resulted in increasing the availability of phenolic compounds and the antioxidant activity (64.7%) of cooked pasta. Sensory evaluation scores showed that the use of 5-10% of the KBL additive could be successfully accepted by consumers.

10.
Int J Mol Sci ; 23(11)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35682785

RESUMO

On the basis of studies carried out in the last few years, it is estimated that maize diseases cause yield losses of up to 30% each year. The most dangerous diseases are currently considered to be caused by fungi of the genus Fusarium, which are the main culprits of root rot, ear rots, and stalk rot. Early plant infection causes grain diminution, as well as a significant deterioration in nutritional value and fodder quality due to the presence of harmful mycotoxins. Therefore, the aim of the research was to identify new markers of the SilicoDArT and SNP type, which could be used for the mass selection of varieties resistant to fusarium. The plant material consisted of 186 inbred maize lines. The lines came from experimental plots belonging to two Polish breeding companies: Plant Breeding Smolice Ltd., (Co., Kobylin, Poland). Plant Breeding and Acclimatization Institute-National Research Institute Group (51°41'23.16″ N, 17°4'18.241″ E), and Malopolska Plant Breeding Kobierzyce, Poland Ltd., (Co., Kobierzyce, Poland) (50°58'19.411″ N, 16°55'47.323″ E). As a result of next-generation sequencing, a total of 81,602 molecular markers were obtained, of which, as a result of the associative mapping, 2962 (321 SilicoDArT and 2641 SNP) significantly related to plant resistance to fusarium were selected. Out of 2962 markers significantly related to plant resistance in the fusarium, seven markers (SilicoDArT, SNP) were selected, which were significant at the level of 0.001. They were used for physical mapping. As a result of the analysis, it was found that two out of seven selected markers (15,097-SilicoDArT and 58,771-SNP) are located inside genes, on chromosomes 2 and 3, respectively. Marker 15,097 is anchored to the gene encoding putrescine N-hydroxycinnamoyltransferase while marker 58,771 is anchored to the gene encoding the peroxidase precursor 72. Based on the literature data, both of these genes may be associated with plant resistance to fusarium. Therefore, the markers 15,097 (SilicoDArT) and 58,771 (SNP) can be used in breeding programs to select lines resistant to fusarium.


Assuntos
Fusarium , Resistência à Doença/genética , Fusarium/genética , Sequenciamento de Nucleotídeos em Larga Escala , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Zea mays/genética , Zea mays/microbiologia
11.
Genes (Basel) ; 13(5)2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35627233

RESUMO

In the last decade, many scientists have used molecular biology methods in their research to locate the grain-yield-determining loci and yield structure characteristics in maize. Large-scale molecular analyses in maize do not only focus on the identification of new markers and quantitative trait locus (QTL) regions. DNA analysis in the selection of parental components for heterotic crosses is a very important tool for breeders. The aim of this research was to identify and select new markers for maize (SNP and SilicoDArT) linked to genes influencing the size of the yield components in maize. The plant material used for the research was 186 inbred maize lines. The field experiment was established in twolocations. The yield and six yield components were analyzed. For identification of SNP and SilicoDArT markers related to the yield and yield components, next-generation sequencing was used. As a result of the biometric measurements analysis, differentiation in the average elevation of the analyzed traits for the lines in both locations was found. The above-mentioned results indicate the existence of genotype-environment interactions. The analysis of variance for the observed quality between genotypes indicated a statistically significant differentiation between genotypes and a statistically significant differentiation for all the observed properties betweenlocations. A canonical variable analysis was applied to present a multi-trait assessment of the similarity of the tested maize genotypes in a lower number of dimensions with the lowest possible loss of information. No grouping of lines due to the analyzed was observed. As a result of next-generation sequencing, the molecular markers SilicoDArT (53,031) and SNP (28,571) were obtained. The genetic distance between the analyzed lines was estimated on the basis of these markers. Out of 81,602 identified SilicoDArT and SNP markers, 15,409 (1559 SilicoDArT and 13,850 SNPs) significantly related to the analyzed yield components were selected as a result of association mapping. The greatest numbers of molecular markers were associated with cob length (1203), cob diameter (1759), core length (1201) and core diameter (2326). From 15,409 markers significantly related to the analyzed traits of the yield components, 18 DArT markers were selected, which were significant for the same four traits (cob length, cob diameter, core length, core diameter) in both Kobierzyce and Smolice. These markers were used for physical mapping. As a result of the analyses, it was found that 6 out of 18 (1818; 14,506; 2317; 3233; 11,657; 12,812) identified markers are located inside genes. These markers are located on chromosomes 8, 9, 7, 3, 5, and 1, respectively.


Assuntos
Polimorfismo de Nucleotídeo Único , Zea mays , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas , Tecnologia , Zea mays/genética
12.
Biomol Concepts ; 13(1): 1-9, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35212495

RESUMO

Wheat leaf rust, caused by fungal pathogen Puccinia triticina Erikss, annually contributes to production losses as high as 40% in susceptible varieties and remains as one of the most damaging diseases of wheat worldwide. Currently, one of the major challenges of wheat geneticists and breeders is to accumulate major genes for durability of rust resistance called "slow rusting" genes using marker-assisted selection (MAS). Until now, eight genes (Lr34/Yr18, Lr46/Yr29, Lr67/Yr46, Lr68, Lr74, Lr75, Lr77, and Lr78) conferring resistance against multiple fungal pathogens have been identified in wheat gene pool and the molecular markers were developed for them. In MAS practice, it is a common problem that cultivars exhibiting desirable marker genotypes may not necessarily have the targeted genes or alleles and vice versa, which is known as "false positives." The aim of this study was to compare the available four markers: Xwmc44, Xgwm259, Xbarc80, and csLV46G22 markers (not published yet), for the identification of the Lr46/Yr29 loci in 73 genotypes of wheat, which were reported as sources of various "slow rusting" genes, including 60 with confirmed Lr46/Yr29 gene, reported in the literature. This research revealed that csLV46G22 together with Xwmc44 is most suitable for the identification of resistance allele of the Lr46/Yr29 gene; however, there is a need to clone the Lr46/Yr29 loci to identify and verify the allelic variation of the gene and the function.


Assuntos
Doenças das Plantas , Triticum , Mapeamento Cromossômico , Genes de Plantas , Marcadores Genéticos , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Triticum/microbiologia
13.
Int J Mol Sci ; 22(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072515

RESUMO

Today, agricultural productivity is essential to meet the needs of a growing population, and is also a key tool in coping with climate change. Innovative plant breeding technologies such as molecular markers, phenotyping, genotyping, the CRISPR/Cas method and next-generation sequencing can help agriculture meet the challenges of the 21st century more effectively. Therefore, the aim of the research was to identify single-nucleotide polymorphisms (SNPs) and SilicoDArT markers related to select morphological features determining the yield in maize. The plant material consisted of ninety-four inbred lines of maize of various origins. These lines were phenotyped under field conditions. A total of 14 morphological features was analyzed. The DArTseq method was chosen for genotyping because this technique reduces the complexity of the genome by restriction enzyme digestion. Subsequently, short fragment sequencing was used. The choice of a combination of restrictases allowed the isolation of highly informative low copy fragments of the genome. Thanks to this method, 90% of the obtained DArTseq markers are complementary to the unique sequences of the genome. All the observed features were normally distributed. Analysis of variance indicated that the main effect of lines was statistically significant (p < 0.001) for all 14 traits of study. Thanks to the DArTseq analysis with the use of next-generation sequencing (NGS) in the studied plant material, it was possible to identify 49,911 polymorphisms, of which 33,452 are SilicoDArT markers and the remaining 16,459 are SNP markers. Among those mentioned, two markers associated with four analyzed traits deserved special attention: SNP (4578734) and SilicoDArT (4778900). SNP marker 4578734 was associated with the following features: anthocyanin coloration of cob glumes, number of days from sowing to anthesis, number of days from sowing to silk emergence and anthocyanin coloration of internodes. SilicoDArT marker 4778900 was associated with the following features: number of days from sowing to anthesis, number of days from sowing to silk emergence, tassel: angle between the axis and lateral branches and plant height. Sequences with a length of 71 bp were used for physical mapping. The BLAST and EnsemblPlants databases were searched against the maize genome to identify the positions of both markers. Marker 4578734 was localized on chromosome 7, the closest gene was Zm00001d022467, approximately 55 Kb apart, encoding anthocyanidin 3-O-glucosyltransferase. Marker 4778900 was located on chromosome 7, at a distance of 45 Kb from the gene Zm00001d045261 encoding starch synthase I. The latter observation indicated that these flanking SilicoDArT and SNP markers were not in a state of linkage disequilibrium.


Assuntos
Mapeamento Cromossômico , Marcadores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Zea mays/anatomia & histologia , Zea mays/genética , Genoma de Planta , Estudo de Associação Genômica Ampla , Endogamia , Filogenia , Melhoramento Vegetal , Locos de Características Quantitativas
14.
Open Life Sci ; 16(1): 172-183, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33817309

RESUMO

Leaf rust caused by the fungus Puccinia recondita f. sp. tritici is one of the most dangerous diseases of common wheat. Infections caused by fungal pathogens reduce the quantity and quality of yields of many cereal species. The most effective method to limit plant infection is to use cultivars that show rust resistance. Genetically conditioned horizontal-type resistance (racial-nonspecific) is a desirable trait because it is characterized by more stable expression compared to major (R) genes that induce racially specific resistance, often overcome by pathogens. Horizontal resistance is conditioned by the presence of slow rust genes, which include genes Lr34 and Lr46. This study aimed to identify markers linked to both genes in 64 common wheat lines and to develop multiplex PCR reaction conditions that were applied to identify both genes simultaneously. The degree of infestation of the analyzed lines was also assessed in field conditions during the growing season of 2017 and 2018. Simple sequence repeat anchored-polymerase chain reaction (SSR-PCR) marker csLV was identified during analysis in line PHR 4947. The presence of a specific sequence has also been confirmed in multiplex PCR analyses. In addition to gene Lr34, gene Lr46 was identified in this genotype. Lines PHR 4947 and PHR 4819 were characterized by the highest leaf rust resistance in field conditions. During STS-PCR analyses, the marker wmc44 of gene Lr46 was identified in most of the analyzed lines. This marker was not present in the following genotypes: PHR 4670, PHR 4800, PHR 4859, PHR 4907, PHR 4922, PHR 4949, PHR 4957, PHR 4995, and PHR 4997. The presence of a specific sequence has also been confirmed in multiplex PCR analyses. Genotypes carrying the markers of the analyzed gene showed good resistance to leaf rust in field conditions in both 2017 and 2018. Research has demonstrated that marker assisted selection (MAS) and multiplex PCR techniques are excellent tools for selecting genotypes resistant to leaf rust.

15.
J Appl Genet ; 61(4): 503-511, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32812165

RESUMO

Lr46/Yr29/Pm39 (Lr46) is a gene for slow rusting resistance in wheat. The aim of the study was to analyze the miRNA expression in selected common wheat cultivars carrying resistance genes, Lr46 among others (HN Rod, Pavon'S', Myna'S', Frontana'S', and Sparrow'S') in response to leaf rust infection caused by Puccinia triticina Erikss. In the Pavon 'S', Myna 'S', Frontana'S', and Sparow'S' varieties a product with a length of 242 bp has been identified, which is specific to the Xwmc44 marker linked to the brown rust resistance gene Lr46. In the next step, the differences in the expression of microRNA (miR5085 and miR164) associated with the Lr46 gene, which is responsible for different resistance of selected wheat cultivars to leaf rust, were examined using emulsion PCR (ddPCR). In the experiment, biotic stress was induced in mature plants by infecting them with fungal spores under controlled conditions in a growth chamber. For analysis the plant material was collected before inoculation and 6, 12, 24, and 48 h after inoculation. The experiments also showed that plant infection with Puccinia triticina resulted in an increase in miR164 expression in cultivars carrying the Lr46 gene. The expression of miR164 remained stable in a control cultivar (HN ROD) lacking this gene. This has proved that miR164 can be involved in leaf rust resistance mechanisms.


Assuntos
Resistência à Doença/genética , MicroRNAs/genética , Proteínas de Plantas/genética , Triticum/genética , Basidiomycota/patogenicidade , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Locos de Características Quantitativas/genética , Triticum/crescimento & desenvolvimento , Triticum/microbiologia
16.
J Appl Genet ; 61(3): 359-366, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32424640

RESUMO

Recently, leaf rust and yellow rust caused by the fungi Puccinia triticina Erikss. and P. striiformis Westend f. sp. tritici Eriks and Henn are diseases of increasing threat in triticale (× Triticosecale Wittmack, AABBRR, 2n = 6x = 42) growing areas. The use of genetic resistance is considered the most economical, effective and environmentally friendly method to control the disease and minimize the use of fungicides. Currently, breeding programs mainly relied on race-specific Lr and Yr genes (R), but new races of the rust fungi frequently defeat resistance. There is a small group of genes that causes partial type of resistance (PR) that are characterized by a slow epidemic build up despite a high infection type. In wheat slow rusting resistance genes displayed longer latent periods, low infection frequencies, smaller pustule size and less spore production. Slow rusting Lr46/Yr29 gene, located on chromosome 1B, is being exploited in many wheat breeding programs. So far, there is no information about slow rusting genes in triticale. This paper showed significant differences between the results of identification of wheat molecular markers Xwmc44 and csLV46G22 associated with Lr46/Yr29 in twenty triticale cultivars, which were characterized by high levels of field resistance to leaf and yellow rust. The csLV46G22res marker has been identified in the following cultivars: Kasyno, Mamut and Puzon. Belcanto and Kasyno showed the highest resistance levels in three-year (2016-2018), leaf and yellow rust severity tests under post-registration variety testing program (PDO). Leaf tip necrosis, a phenotypic trait associated with Lr34/Yr18 and Lr46/Yr29 was observed, among others, to Belcanto and Kasyno, which showed the highest resistance for leaf rust and yellow rust. Kasyno could be considered to have Lr46/Yr29 and can be used as a source of slow rust resistance in breeding and importantly as a component of gene pyramiding in triticale.


Assuntos
Basidiomycota/patogenicidade , Resistência à Doença/genética , Doenças das Plantas/genética , Triticale/genética , Mapeamento Cromossômico , Genes de Plantas , Doenças das Plantas/microbiologia , Triticale/microbiologia
17.
Front Plant Sci ; 11: 447, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32457768

RESUMO

There is a growing interest in breeding and production of hexaploid triticale (× Triticosecale Wittmack ex A. Camus) in European Union and in the world. It is reported that triticale can be an alternative to wheat (Triticum aestivum L.) for livestock feed production and has a potential to become preferred industrial energy crop. Fungal diseases, mainly leaf and stripe rusts, are the limiting factors of triticale growth and yield. Geneticists and breeders are now focusing on accumulation of the major genes for durability of rust resistance. Slow-rusting genes Lr34/Yr18 and Lr46/Yr19 are being exploited in many wheat breeding programs. This type of horizontal resistance is reported to be effective over space and time. Classical breeding techniques supported by marker-assisted selection (MAS) are the main tools in breeding programs. The aim of this study was to assess the possibility of transfer of slow-rusting genes from resistant genotypes of wheat into hexaploid triticale through cross-hybridizations. A total of 5,094 manual pollinations were conducted between two triticale cultivars Fredro and Twingo and 33 accessions of common wheat, which were reported as sources of slow-rusting resistance genes. The investigation of the slow-rusting gene transmission was performed using both molecular markers analyses and genomic in situ hybridization (GISH). In total, 34 F1 hybrid plants were obtained, and 29 of them carried both slow-rusting loci. Therefore, these hybrids may be used for triticale prebreeding program.

18.
Open Life Sci ; 15(1): 379-388, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33817226

RESUMO

The article presents the technological and antioxidant properties of potato juice (PJ) protein concentrate obtained by the novel ultrafiltration method. Commercial products, obtained from waste PJ by the traditional method of acid coagulation of proteins, were studied for comparison. Functional properties such as water or oil absorption, foaming capacity, and foam stability (FS) as well as solubility at various pH were assessed. Moreover, the total phenolic compound content, antioxidant activity, and mineral composition were determined. The results showed that PJ protein concentrate obtained by ultrafiltration has good oil absorption properties (6.30 mL/g), which is more than two times higher than the commercial proteins used in the comparison (P2 = 2.33 mL/g and P3 = 2.67 mL/g). Moreover, the ability to create and stabilize foam was also higher (FS ranging from 20.0% at pH = 10 to 11.3% at pH = 2 after 60 min of testing). It had higher content of macro- and microelements and antioxidant activity compared to other samples. Therefore, it is possible to obtain interesting potato protein concentrate from the waste product of the starch production process, which may be an interesting raw material for enriching food.

19.
Open Life Sci ; 15: 1-11, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33987466

RESUMO

A number of studies have shown that the greater the genetic diversity of parental lines, the greater the heterosis effect. Genetic or phenotypic variation can be estimated by genotype testing on the basis of the observations obtained through prediction (a priori) or the observations and studies (a posteriori). The first method uses data such as the genealogy of a given subject and the information about its geographical origin. The second method is based on the phenotypic observation and studies, as well as on the molecular research. The development of molecular genetics and genotype testing methods at the DNA level has made it possible to rapidly assess the genetic variability regardless of the modifying effect of the environment. The aim of this study was to determine the relationship between the degree of relatedness and the DNA polymorphism (determined using AFLP, RAPD, and SSR markers) of inbred maize lines and the effect of hybrid-form heterosis. Our analysis demonstrated that the parental components for heterosis crosses can be selected on the basis of the genetic similarity determined using the molecular SSR markers and the Jaccard, Kluczynski, Nei, and Rogers coefficients. Molecular AFLP markers proved less useful for selecting the parental components, but may be used to group lines with incomplete origin data. In the case of the RAPD markers, no clear relationship between genetic distance and the heterosis effect was found in this study.

20.
Plants (Basel) ; 8(9)2019 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-31540117

RESUMO

The chief aim of plant breeding is to improve varieties so as to increase their yield and breeding traits. One of the first stages of breeding is the selection of parental forms from the available gene pool of existing varieties. To date, costly and laborious methods based on multiple crossbreeding and phenotypic selection have been necessary to properly assess genetic resources in terms of productivity, quality parameters, and susceptibility to biotic and abiotic stressors. The often long and complicated breeding cycle can be significantly shortened through selection using DNA markers. To this end, use is made of close couplings between the marker and the locus responsible for the inheritance of the functional trait. The aim of this study was to identify single nucleotide polymorphism (SNP) and SilicoDArT markers associated with yield traits and to predict the heterosis effect for yield traits in maize (Zea mays L.). The plant material used in the research consisted of 19 inbred maize lines derived from different starting materials, and 13 hybrids resulting from crossing them. A two-year field experiment with inbred lines and hybrids was established at two Polish breeding stations on 10 m2 plots in a randomized block design with three replicates. The biometric measurements included cob length, cob diameter, core length, core diameter, number of rows of grain, number of grains in a row, mass of grain from the cob, weight of one thousand grains, and yield. The isolated DNA was subjected to DArTseq genotyping. Association mapping was performed in this study using a method based on the mixed linear model with the population structure estimated by eigenanalysis (principal component analysis of all markers) and modeled by random effects. Narew, Popis, Kozak, M Glejt, and Grom were the hybrids used in the study that showed the highest significant heterosis effect in 2013 and 2014. The similarity between parental components determined on the basis of SNP and SilicoDArT marker analysis did not exceed 33%. It was found that the genetic similarity between parental components, determined on the basis of SNP and SilicoDArT markers, reflected their degree of relationship, and correlated significantly with the effect of heterosis. As the results indicate, the parental components for heterosis crosses can be selected based on genetic similarity between parental components evaluated using SNP and SilicoDArT markers, supported with information on the origin of parental forms. Of the markers we analyzed, 76 were selected as being significantly associated with at least six traits observed in 2013 and 2014 at both the Lagiewniki and Smolice stations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...