Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39185166

RESUMO

Replication-initiating HUH-endonucleases (Reps) are enzymes that form covalent bonds with single-stranded DNA (ssDNA) in a sequence specific manner to initiate rolling circle replication. These nucleases have been co-opted for use in biotechnology as sequence specific protein-ssDNA bioconjugation fusion partners dubbed 'HUH-tags'. Here, we describe the engineering and in vitro characterization of a series of laboratory evolved HUH-tags capable of forming robust sequence-directed covalent bonds with unmodified RNA substrates. We show that promiscuous Rep-RNA interaction can be enhanced through directed evolution from nearly undetectable levels in wildtype enzymes to robust reactivity in final engineered iterations. Taken together, these engineered HUH-tags represent a promising platform for enabling site-specific protein-RNA covalent bioconjugation in vitro, potentially mediating a host of new applications and offering a valuable addition to the HUH-tag repertoire.

2.
ACS Synth Biol ; 13(6): 1669-1678, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38820192

RESUMO

HUH-tags have emerged as versatile fusion partners that mediate sequence specific protein-ssDNA bioconjugation through a simple and efficient reaction. Here we present HUHgle, a python-based interactive tool for the visualization, design, and optimization of substrates for HUH-tag mediated covalent labeling of proteins of interest with ssDNA substrates of interest. HUHgle streamlines design processes by integrating an intuitive plotting interface with a search function capable of predicting and displaying protein-ssDNA bioconjugate formation efficiency and specificity in proposed HUH-tag/ssDNA sequence combinations. Validation demonstrates that HUHgle accurately predicts product formation of HUH-tag mediated bioconjugation for single- and orthogonal-labeling reactions. In order to maximize the accessibility and utility of HUHgle, we have implemented it as a user-friendly Google Colab notebook which facilitates broad use of this tool, regardless of coding expertise.


Assuntos
DNA de Cadeia Simples , Software , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , Proteínas/metabolismo , Proteínas/química , Proteínas/genética
3.
Acta Crystallogr F Struct Biol Commun ; 79(Pt 12): 295-300, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38051309

RESUMO

Replication initiator proteins (Reps) from the HUH endonuclease family process specific single-stranded DNA sequences to initiate rolling-circle replication in viruses. Here, the first crystal structure of the apo state of a Rep domain from the smacovirus family is reported. The structure of the human smacovirus 1 Rep domain was obtained at 1.33 Šresolution and represents an expansion of the HUH endonuclease superfamily, allowing greater diversity in bioconjugation-tag applications.


Assuntos
DNA de Cadeia Simples , Endonucleases , Humanos , Cristalografia por Raios X , Endonucleases/química , DNA Viral/genética
4.
mBio ; 14(1): e0258722, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36541758

RESUMO

Replication-initiating HUH endonucleases (Reps) are sequence-specific nucleases that cleave and rejoin single-stranded DNA (ssDNA) during rolling-circle replication. These functions are mediated by covalent linkage of the Rep to its substrate post cleavage. Here, we describe the structures of the endonuclease domain from the Muscovy duck circovirus Rep in complex with its cognate ssDNA 10-mer with and without manganese in the active site. Structural and functional analyses demonstrate that divalent cations play both catalytic and structural roles in Reps by polarizing and positioning their substrate. Further structural comparisons highlight the importance of an intramolecular substrate Watson-Crick (WC) base pairing between the -4 and +1 positions. Subsequent kinetic and functional analyses demonstrate a functional dependency on WC base pairing between these positions regardless of the pair's identity (i.e., A·T, T·A, G·C, or C·G), highlighting a structural specificity for substrate interaction. Finally, considering how well WC swaps were tolerated in vitro, we sought to determine to what extent the canonical -4T·+1A pairing is conserved in circular Rep-encoding single-stranded DNA viruses and found evidence of noncanonical pairings in a minority of these genomes. Altogether, our data suggest that substrate intramolecular WC base pairing is a universal requirement for separation and reunion of ssDNA in Reps. IMPORTANCE Circular Rep-encoding single-stranded DNA (CRESS-DNA) viruses are a ubiquitous group of viruses that infect organisms across all domains of life. These viruses negatively impact both agriculture and human health. All members of this viral family employ a multifunctional nuclease (Rep) to initiate replication. Reps are structurally similar throughout this family, making them targets of interest for viral inhibition strategies. Here, we investigate the functional dependencies of the Rep protein from Muscovy duck circovirus for ssDNA interaction. We demonstrate that this Rep requires an intramolecular Watson-Crick base pairing for origin of replication (Ori) recognition and interaction. We show that noncognate base pair swaps are well tolerated, highlighting a local structural specificity over sequence specificity. Bioinformatic analysis found that the vast majority of CRESS-DNA Oris form base pairs in conserved positions, suggesting this pairing is a universal requirement for replication initiation in the CRESS-DNA virus family.


Assuntos
Circovirus , DNA de Cadeia Simples , Humanos , Pareamento de Bases , DNA de Cadeia Simples/genética , Endonucleases/metabolismo , Circovirus/genética
5.
Nucleic Acids Res ; 49(2): 1046-1064, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33410911

RESUMO

Replication initiator proteins (Reps) from the HUH-endonuclease superfamily process specific single-stranded DNA (ssDNA) sequences to initiate rolling circle/hairpin replication in viruses, such as crop ravaging geminiviruses and human disease causing parvoviruses. In biotechnology contexts, Reps are the basis for HUH-tag bioconjugation and a critical adeno-associated virus genome integration tool. We solved the first co-crystal structures of Reps complexed to ssDNA, revealing a key motif for conferring sequence specificity and for anchoring a bent DNA architecture. In combination, we developed a deep sequencing cleavage assay, termed HUH-seq, to interrogate subtleties in Rep specificity and demonstrate how differences can be exploited for multiplexed HUH-tagging. Together, our insights allowed engineering of only four amino acids in a Rep chimera to predictably alter sequence specificity. These results have important implications for modulating viral infections, developing Rep-based genomic integration tools, and enabling massively parallel HUH-tag barcoding and bioconjugation applications.


Assuntos
DNA Helicases/metabolismo , DNA de Cadeia Simples/metabolismo , Desoxirribonuclease I/metabolismo , Conformação de Ácido Nucleico , Conformação Proteica , Engenharia de Proteínas/métodos , Endonucleases Específicas para DNA e RNA de Cadeia Simples/metabolismo , Transativadores/metabolismo , Proteínas Virais/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Circoviridae/enzimologia , Sequência Conservada , Cristalografia por Raios X , DNA Helicases/química , DNA de Cadeia Simples/química , Desoxirribonuclease I/química , Biblioteca Gênica , Modelos Moleculares , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Vírus de Plantas/enzimologia , Ligação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Origem de Replicação , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Endonucleases Específicas para DNA e RNA de Cadeia Simples/química , Especificidade por Substrato , Transativadores/química , Proteínas Virais/química
6.
ACS Sens ; 5(1): 34-39, 2020 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-31872754

RESUMO

Molecular tension sensors measure piconewton forces experienced by individual proteins in the context of the cellular microenvironment. Current genetically encoded tension sensors use FRET to report on extension of a deformable peptide encoded in a cellular protein of interest. Here, we present the development and characterization of a new type of molecular tension sensor based on bioluminescence resonance energy transfer (BRET), which exhibits more desirable spectral properties and an enhanced dynamic range compared to other molecular tension sensors. Moreover, it avoids many disadvantages of FRET measurements in cells, including autofluorescence, photobleaching, and corrections of direct acceptor excitation. We benchmark the sensor by inserting it into the canonical mechanosensing focal adhesion protein vinculin, observing highly resolved gradients of tensional changes across focal adhesions. We anticipate that the BRET tension sensor will expand the toolkit available to study mechanotransduction at a molecular level and allow potential extension to an in vivo context.


Assuntos
Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos
7.
J Virol ; 93(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30518649

RESUMO

Here, we investigate an unusual antiviral mechanism developed in the bacterium Streptomyces griseus SgrAI is a type II restriction endonuclease that forms run-on oligomer filaments when activated and possesses both accelerated DNA cleavage activity and expanded DNA sequence specificity. Mutations disrupting the run-on oligomer filament eliminate the robust antiphage activity of wild-type SgrAI, and the observation that even relatively modest disruptions completely abolish this anti-viral activity shows that the greater speed imparted by the run-on oligomer filament mechanism is critical to its biological function. Simulations of DNA cleavage by SgrAI uncover the origins of the kinetic advantage of this newly described mechanism of enzyme regulation over more conventional mechanisms, as well as the origin of the sequestering effect responsible for the protection of the host genome against damaging DNA cleavage activity of activated SgrAI.IMPORTANCE This work is motivated by an interest in understanding the characteristics and advantages of a relatively newly discovered enzyme mechanism involving filament formation. SgrAI is an enzyme responsible for protecting against viral infections in its host bacterium and was one of the first such enzymes shown to utilize such a mechanism. In this work, filament formation by SgrAI is disrupted, and the effects on the speed of the purified enzyme as well as its function in cells are measured. It was found that even small disruptions, which weaken but do not destroy filament formation, eliminate the ability of SgrAI to protect cells from viral infection, its normal biological function. Simulations of enzyme activity were also performed and show how filament formation can greatly speed up an enzyme's activation compared to that of other known mechanisms, as well as to better localize its action to molecules of interest, such as invading phage DNA.


Assuntos
Bacteriófagos/genética , DNA Viral/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Streptomyces griseus/virologia , Bacteriófagos/crescimento & desenvolvimento , Sequência de Bases/genética , DNA Viral/genética , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Ativação Enzimática , Streptomyces griseus/genética , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA