Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(21): 4761-4769.e5, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37935118

RESUMO

The European wildcat population in Scotland is considered critically endangered as a result of hybridization with introduced domestic cats,1,2 though the time frame over which this gene flow has taken place is unknown. Here, using genome data from modern, museum, and ancient samples, we reconstructed the trajectory and dated the decline of the local wildcat population from viable to severely hybridized. We demonstrate that although domestic cats have been present in Britain for over 2,000 years,3 the onset of hybridization was only within the last 70 years. Our analyses reveal that the domestic ancestry present in modern wildcats is markedly over-represented in many parts of the genome, including the major histocompatibility complex (MHC). We hypothesize that introgression provides wildcats with protection against diseases harbored and introduced by domestic cats, and that this selection contributes to maladaptive genetic swamping through linkage drag. Using the case of the Scottish wildcat, we demonstrate the importance of local ancestry estimates to both understand the impacts of hybridization in wild populations and support conservation efforts to mitigate the consequences of anthropogenic and environmental change.


Assuntos
Fluxo Gênico , Hibridização Genética , Animais , Gatos , Escócia
2.
PeerJ ; 9: e10843, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33614289

RESUMO

Pangolins, often considered the world's most trafficked wild mammals, have continued to experience rapid declines across Asia and Africa. All eight species are classed as either Vulnerable, Endangered or Critically Endangered by the International Union for Conservation of Nature (IUCN) Red List. Alongside habitat loss, they are threatened mainly by poaching and/or legal hunting to meet the growing consumer demand for their meat and keratinous scales. Species threat assessments heavily rely on changes in species distributions which are usually expensive and difficult to monitor, especially for rare and cryptic species like pangolins. Furthermore, recent assessments of the threats to pangolins focus on characterising their trade using seizure data which provide limited insights into the true extent of global pangolin declines. As the consequences of habitat modifications and poaching/hunting on species continues to become apparent, it is crucial that we frequently update our understanding of how species distributions change through time to allow effective identification of geographic regions that are in need of urgent conservation actions. Here we show how georeferencing pangolin specimens from natural history collections can reveal how their distributions are changing over time, by comparing overlap between specimen localities and current area of habitat maps derived from IUCN range maps. We found significant correlations in percentage area overlap between species, continent, IUCN Red List status and collection year, but not ecology (terrestrial or arboreal/semi-arboreal). Human population density (widely considered to be an indication of trafficking pressure) and changes in primary forest cover, were weakly correlated with percentage overlap. Our results do not suggest a single mechanism for differences among historical distributions and present-day ranges, but rather show that multiple explanatory factors must be considered when researching pangolin population declines as variations among species influence range fluctuations. We also demonstrate how natural history collections can provide temporal information on distributions and discuss the limitations of collecting and using historical data.

3.
Proc Biol Sci ; 286(1913): 20192025, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31640514

RESUMO

Natural history specimens are widely used across ecology, evolutionary biology and conservation. Although biological sex may influence all of these areas, it is often overlooked in large-scale studies using museum specimens. If collections are biased towards one sex, studies may not be representative of the species. Here, we investigate sex ratios in over two million bird and mammal specimen records from five large international museums. We found a slight bias towards males in birds (40% females) and mammals (48% females), but this varied among orders. The proportion of female specimens has not significantly changed in 130 years, but has decreased in species with showy male traits like colourful plumage and horns. Body size had little effect. Male bias was strongest in name-bearing types; only 27% of bird and 39% of mammal types were female. These results imply that previous studies may be impacted by undetected male bias, and vigilance is required when using specimen data, collecting new specimens and designating types.


Assuntos
Aves , Mamíferos , Museus , Animais , Viés , Fatores Sexuais
4.
Mol Ecol ; 23(19): 4813-30, 2014 10.
Artigo em Inglês | MEDLINE | ID: mdl-25212210

RESUMO

Widely distributed taxa provide an opportunity to compare biogeographic responses to climatic fluctuations on multiple continents and to investigate speciation. We conducted the most geographically and genomically comprehensive study to date of the red fox (Vulpes vulpes), the world's most widely distributed wild terrestrial carnivore. Analyses of 697 bp of mitochondrial sequence in ~1000 individuals suggested an ancient Middle Eastern origin for all extant red foxes and a 400 kya (SD = 139 kya) origin of the primary North American (Nearctic) clade. Demographic analyses indicated a major expansion in Eurasia during the last glaciation (~50 kya), coinciding with a previously described secondary transfer of a single matriline (Holarctic) to North America. In contrast, North American matrilines (including the transferred portion of Holarctic clade) exhibited no signatures of expansion until the end of the Pleistocene (~12 kya). Analyses of 11 autosomal loci from a subset of foxes supported the colonization time frame suggested by mtDNA (and the fossil record) but, in contrast, reflected no detectable secondary transfer, resulting in the most fundamental genomic division of red foxes at the Bering Strait. Endemic continental Y-chromosome clades further supported this pattern. Thus, intercontinental genomic exchange was overall very limited, consistent with long-term reproductive isolation since the initial colonization of North America. Based on continental divergence times in other carnivoran species pairs, our findings support a model of peripatric speciation and are consistent with the previous classification of the North American red fox as a distinct species, V. fulva.


Assuntos
Evolução Molecular , Raposas/genética , Genética Populacional , Filogenia , Alelos , Animais , Teorema de Bayes , Núcleo Celular/genética , Análise por Conglomerados , DNA Mitocondrial/genética , Fluxo Gênico , Marcadores Genéticos , Variação Genética , Oriente Médio , Modelos Genéticos , América do Norte , Filogeografia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...