Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mycol Prog ; 22(7): 50, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323627

RESUMO

Waterways are ideal pathways for Phytophthora dispersal and potential introduction to terrestrial ecosystems. While many Phytophthora species from phylogenetic clades 6, 9 and 10 are predominant oomycetes in watercourses due to their adaptation to a lifestyle as saprotrophs and opportunistic pathogens of riparian plants, species from clades 2, 7 and 8 are predominantly soil- or airborne using aquatic habitats as temporal niches for spreading and invading terrestrial sites along the watercourses. In contrast to forest ecosystems, knowledge of Phytophthora diversity in watercourses in Central Europe is limited. Between 2014 and 2019 extensive surveys of streams and rivers were undertaken across Austria, in South Moravia, Czech Republic and Zilina province, Slovakia to unveil the diversity and distribution of Phytophthora and related oomycetes. In addition, in Austria riparian forests of black alder (Alnus glutinosa) and grey alder (A. incana) in lowlands and in the Alps were examined. A variety of Phytophthora species from clades 2, 6, 7, 8, 9 and 10 were isolated, with clade 6 species showing the widest distribution and abundance. Furthermore, interspecific clade 6 hybrids and other oomycetes such as Halophytophthora fluviatilis and undescribed Nothophytophthora spp. were also obtained. In riparian alders, symptoms of Phytophthora infections were associated with species from the P. × alni complex and P. plurivora. Phytophthora plurivora was most common in alder stands whereas P. uniformis was the oomycete species occurring at the highest altitude in alpine riparian areas. Supplementary Information: The online version contains supplementary material available at 10.1007/s11557-023-01898-1.

2.
FEMS Microbiol Ecol ; 98(11)2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36208910

RESUMO

Clearcutting represents a standard management practice in temperate forests with dramatic consequences for the forest ecosystem. The removal of trees responsible for the bulk of primary production can result in a complex response of the soil microbiome. While studies have shown that tree root-symbiotic ectomycorrhizal fungi disappear from soil and decomposing fine roots of trees become a hotspot for fungal decomposition, the fate of the bacterial component of the soil microbiome following clearcutting is unclear. Here, we investigated the response of bacterial community composition for 2 years following clearcutting of a Picea abies stand in soil, rhizosphere and tree roots, by 16S rRNA amplicon sequencing. While in the first few months after clearcutting there was no significant response of bacterial community composition in the rhizosphere and soil, bacterial communities associated with tree roots underwent more profound changes over time. Acidobacteria were abundant in rhizosphere and soil, while Firmicutes were strongly represented in the roots. In addition, bacterial communities on decomposing roots were significantly different from those on pre-clearcut live roots. Compared with fungi, the response of bacterial communities to clearcutting was much less pronounced, indicating independent development of the two microbial domains.


Assuntos
Abies , Microbiota , Micorrizas , Picea , Pinus , Solo , Picea/microbiologia , Microbiologia do Solo , Fungos , RNA Ribossômico 16S/genética , Rizosfera , Bactérias/genética , Raízes de Plantas/microbiologia
3.
Mycologia ; 114(1): 114-143, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34788201

RESUMO

Revision of the taxonomically complicated European Melanoleuca taxa with well-developed macrocystidia (subgenus Melanoleuca) is presented. The species are delimited by macro- and micromorphological characters and by multilocus molecular data based on internal transcribed spacer (ITS), second largest subunit of RNA polymerase I (rpb2), and translation elongation factor 1-alpha (tef1) genes. The study is based on both type material and recent collections. Phylogenetically, these taxa form 10 clades recognized as 11 separate species: M. albomarginata, M. ammophila, M. bataillei, M. cavipes, M. friesii, M. granadensis, M. melaleuca, M. pallidicutis, M. polioleuca, M. strictipes, and M. variabilis. Three species, M. albomarginata, M. ammophila, and M. variabilis, are described as new. Melanoleuca melaleuca is discussed here as the type species of the genus. Discussion of other older names and their taxonomic status is also provided.


Assuntos
RNA Polimerase I , Animais , DNA Espaçador Ribossômico/genética , Filogenia , RNA Polimerase I/genética
4.
Ecol Lett ; 24(12): 2726-2738, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34595822

RESUMO

Although spatial and temporal variation are both important components structuring microbial communities, the exact quantification of temporal turnover rates of fungi and bacteria has not been performed to date. In this study, we utilised repeated resampling of bacterial and fungal communities at specific locations across multiple years to describe their patterns and rates of temporal turnover. Our results show that microbial communities undergo temporal change at a rate of 0.010-0.025 per year (in units of Sorensen similarity), and the change in soil is slightly faster in fungi than in bacteria, with bacterial communities changing more rapidly in litter than soil. Importantly, temporal development differs across fungal guilds and bacterial phyla with different ecologies. While some microbial guilds show consistent responses across regional locations, others show site-specific development with weak general patterns. These results indicate that guild-level resolution is important for understanding microbial community assembly, dynamics and responses to environmental factors.


Assuntos
Microbiota , Micobioma , Fungos , Solo , Microbiologia do Solo
5.
Mycologia ; 113(4): 791-806, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34106041

RESUMO

The family Steccherinaceae includes genera with smooth, hydnoid, and poroid hymenophores, monomitic to dimitic hyphal systems, and generative hyphae with clamps or simple septa. Steccherinum is the largest genus in the family, with a worldwide distribution, and is characterized mainly by a dimitic hyphal system and presence of thick-walled encrusted cystidia. Species traditionally included in Steccherinum, however, have been transferred to other genera based on results of molecular phylogenetic analyses. Even though knowledge of Steccherinaceae has increased in the past few years, very little is known about the hydnoid species of the family, especially from the Neotropics. In this study, we present morphological and phylogenetic analyses on hydnoid specimens of Steccherinaceae collected in the Neotropics. Molecular data of nuc internal transcribed spacer region ITS1-5.8S-ITS rDNA (ITS) and portions of nuc 28S rDNA (28S), translation elongation factor 1-α (tef1), and the largest subunit of RNA polymerase II (rpb1) were obtained from Brazilian collections. Types and original collections were studied for morphological comparison. Samples we studied grouped in four different genera of Steccherinaceae: Cabalodontia, Etheirodon, Metuloidea, and Steccherinum. Three new neotropical species, Cabalodontia delicata, Etheirodon purpureum, and Steccherinum larssonii, are described. In addition, the new combinations Cabalodontia albofibrillosa and Metuloidea reniformis are proposed. The four genera presented in this study are compared and discussed in detail.


Assuntos
Polyporales , DNA Fúngico/genética , DNA Ribossômico/genética , DNA Espaçador Ribossômico/genética , Filogenia , Polyporales/genética , RNA Ribossômico 28S , Análise de Sequência de DNA
6.
PLoS One ; 16(5): e0250527, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34038450

RESUMO

Slow growing oomycete isolates with morphological resemblance to Phytophthora were obtained from forest streams during routine monitoring for the EU quarantine forest pathogen Phytophthora ramorum in Ireland and Northern Ireland. Internal Transcribed Spacer (ITS) sequence analysis indicated that they belonged to two previously unknown species of Nothophytophthora, a recently erected sister genus of Phytophthora. Morphological and temperature-growth studies were carried out to characterise both new species. In addition, Bayesian and Maximum-Likelihood analyses of nuclear 5-loci and mitochondrial 3-loci datasets were performed to resolve the phylogenetic positions of the two new species. Both species were sterile, formed chlamydospores and partially caducous nonpapillate sporangia, and showed slower growth than any of the six known Nothophytophthora species. In all phylogenetic analyses both species formed distinct, strongly supported clades, closely related to N. chlamydospora and N. valdiviana from Chile. Based on their unique combination of morphological and physiological characters and their distinct phylogenetic positions the two new species are described as Nothophytophthora irlandica sp. nov. and N. lirii sp. nov. Their potential lifestyle and geographic origin are discussed.


Assuntos
DNA Espaçador Ribossômico/genética , Filogenia , Phytophthora/isolamento & purificação , Doenças das Plantas/microbiologia , Rios/microbiologia , Análise de Sequência de DNA/métodos , Estramenópilas/isolamento & purificação , Irlanda do Norte , Phytophthora/genética , Estramenópilas/genética
7.
J Fungi (Basel) ; 7(3)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800519

RESUMO

Melanoleuca is one of the taxonomically most complicated genera of Agaricomycetes with several taxonomically lineages. The subgenus Urticocystis of the genus Melanoleuca contains species with either urticoid or absent cheilocystidia. In this paper, three new European species, Melanoleuca galbuserae, Melanoleuca fontenlae, and Melanoleuca acystidiata are described as new to science. Melanoleuca galbuserae, related to Melanoleuca stepposa and Melanoleuca tristis, was discovered in alpine grasslands in North Italy. The type specimens and recent collections of Melanoleuca angelesiana, Melanoleuca castaneofusca, Melanoleuca luteolosperma, Melanoleuca pseudopaedida, and Melanoleuca robertiana were sequenced and morphologically examined. Moreover, the related Melanoleuca microcephala and Melanoleuca paedida were included in morphological examination and DNA sequence analyses. All the species were delimited by macro- and micromorphological characters and the multigene phylogenetic analyses of a combined (ITS, rpb2, and tef1) dataset on the basis of the species tree estimation. In accordance with new molecular and morphological data, we suggest taxonomic reappraisal of M. pseudopaedida and M. robertiana, and M. fontenlae and M. acystidiata are proposed as new species. The differences between the type material of M. angelesiana from the USA and European M. angelesiana specimens are discussed.

8.
Mycologia ; 113(4): 776-790, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33914673

RESUMO

Desarmillaria caespitosa, a North American vicariant species of European D. tabescens, is redescribed in detail based on recent collections from the USA and Mexico. This species is characterized by morphological features and multilocus phylogenetic analyses using portions of nuc rDNA 28S (28S), translation elongation factor 1-alpha (tef1), the second largest subunit of RNA polymerase II (rpb2), actin (act), and glyceraldehyde-3-phosphate dehydrogenase (gpd). A neotype of D. caespitosa is designated here. Morphological and genetic differences between D. caespitosa and D. tabescens were identified. Morphologically, D. caespitosa differs from D. tabescens by having wider basidiospores, narrower cheilocystidia, which are often irregular or mixed (regular, irregular, or coralloid), and narrower caulocystidia. Phylogenetic analyses of five independent gene regions show that D. caespitosa and D. tabescens are separated by nodes with strong support. The new combination, D. caespitosa, is proposed.


Assuntos
Basidiomycota , Fator 1 de Elongação de Peptídeos , Basidiomycota/genética , DNA Fúngico/genética , DNA Ribossômico/genética , América do Norte , Fator 1 de Elongação de Peptídeos/genética , Filogenia , Análise de Sequência de DNA , Esporos Fúngicos
9.
Microorganisms ; 9(2)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578718

RESUMO

A population study of Phytophthora cactorum was performed using ddRADseq sequence variation analysis completed by the analysis of effector genes-RXLR6, RXLR7 and SCR113. The population structure was described by F-statistics, heterozygosity, nucleotide diversity, number of private alleles, number of polymorphic sites, kinship coefficient and structure analysis. The population of P. cactorum in Europe seems to be structured into host-associated groups. The isolates from woody hosts are structured into four groups described previously, while isolates from strawberry form another group. The groups are diverse in effector gene composition and the frequency of outbreeding. When populations from strawberry were analysed, both asexual reproduction and occasional outbreeding confirmed by gene flow among distinct populations were detected. Therefore, distinct P. cactorum populations differ in the level of heterozygosity. The data support the theory of the mixed-mating model for P. cactorum, comprising frequent asexual behaviour and inbreeding alternating with occasional outbreeding. Because P. cactorum is not indigenous to Europe, such variability is probably caused by multiple introductions of different lineages from the area of its original distribution, and the different histories of sexual recombination and host adaptation of particular populations.

10.
J Fungi (Basel) ; 7(2)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546260

RESUMO

Dothistroma septosporum, the primary causal agent of Dothistroma needle blight, is one of the most significant foliar pathogens of pine worldwide. Its wide host and environmental ranges have led to its global success as a pathogen and severe economic damage to pine forests in many regions. This comprehensive global population study elucidated the historical migration pathways of the pathogen to reveal the Eurasian origin of the fungus. When over 3800 isolates were examined, three major population clusters were revealed: North America, Western Europe, and Eastern Europe, with distinct subclusters in the highly diverse Eastern European cluster. Modeling of historical scenarios using approximate Bayesian computation revealed the North American cluster was derived from an ancestral population in Eurasia. The Northeastern European subcluster was shown to be ancestral to all other European clusters and subclusters. The Turkish subcluster diverged first, followed by the Central European subcluster, then the Western European cluster, which has subsequently spread to much of the Southern Hemisphere. All clusters and subclusters contained both mating-types of the fungus, indicating the potential for sexual reproduction, although asexual reproduction remained the primary mode of reproduction. The study strongly suggests the native range of D. septosporum to be in Eastern Europe (i.e., the Baltic and Western Russia) and Western Asia.

11.
Int J Mol Sci ; 21(24)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322721

RESUMO

Phytophthora is arguably one of the most damaging genera of plant pathogens. This pathogen is well suited to transmission via the international plant trade, and globalization has been promoting its spread since the 19th century. Early detection is essential for reducing its economic and ecological impact. Here, a shotgun proteomics approach was utilized for Phytophthora analysis. The collection of 37 Phytophthora isolates representing 12 different species was screened for species-specific peptide patterns. Next, Phytophthora proteins were detected in planta, employing model plants Solanum tuberosum and Hordeum vulgare. Although the evolutionarily conserved sequences represented more than 10% of the host proteome and limited the pathogen detection, the comparison between qPCR and protein data highlighted more than 300 protein markers, which correlated positively with the amount of P. infestans DNA. Finally, the analysis of P. palmivora response in barley revealed significant alterations in plant metabolism. These changes included enzymes of cell wall metabolism, ROS production, and proteins involved in trafficking. The observed root-specific attenuation in stress-response mechanisms, including the biosynthesis of jasmonates, ethylene and polyamines, and an accumulation of serotonin, provided the first insight into molecular mechanisms behind this particular biotic interaction.


Assuntos
Hordeum/microbiologia , Peptídeos/metabolismo , Phytophthora infestans/isolamento & purificação , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Solanum tuberosum/microbiologia , Cromatografia Líquida , Hordeum/enzimologia , Hordeum/metabolismo , Espectrometria de Massas , Redes e Vias Metabólicas , Phytophthora infestans/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Reação em Cadeia da Polimerase , Proteômica , Espécies Reativas de Oxigênio/metabolismo , Solanum tuberosum/metabolismo , Estresse Fisiológico
12.
Int J Mol Sci ; 21(22)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198329

RESUMO

Phytophthora cinnamomi is one of the most invasive tree pathogens that devastates wild and cultivated forests. Due to its wide host range, knowledge of the infection process at the molecular level is lacking for most of its tree hosts. To expand the repertoire of studied Phytophthora-woody plant interactions and identify molecular mechanisms that can facilitate discovery of novel ways to control its spread and damaging effects, we focused on the interaction between P. cinnamomi and sweet chestnut (Castanea sativa), an economically important tree for the wood processing industry. By using a combination of proteomics, metabolomics, and targeted hormonal analysis, we mapped the effects of P. cinnamomi attack on stem tissues immediately bordering the infection site and away from it. P. cinnamomi led to a massive reprogramming of the chestnut proteome and accumulation of the stress-related hormones salicylic acid (SA) and jasmonic acid (JA), indicating that stem inoculation can be used as an easily accessible model system to identify novel molecular players in P. cinnamomi pathogenicity.


Assuntos
Fagaceae/metabolismo , Fagaceae/microbiologia , Phytophthora/patogenicidade , Doenças das Plantas/microbiologia , Sítios de Ligação , Biologia Computacional , Ciclopentanos/metabolismo , Homeostase , Metabolômica , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas , Proteômica , Ácido Salicílico/metabolismo , Transdução de Sinais , Madeira
13.
Mycologia ; 111(5): 813-831, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31525126

RESUMO

The genus Antrodiella includes resupinate and pileate species of polypores with a dimitic hyphal system, small, globose to cylindrical basidiospores, absence of cystidia, tetrapolar mating system, and haplo-dikaryotic nuclear behavior. Recent studies, however, indicate that Antrodiella is highly polyphyletic, so many of its species have been transferred to other genera. This study reviews the systematic status and diversity of Antrodiella from the Neotropics based, in part, on studies of type specimens. Collections from Brazil were used for molecular analysis of nuc rDNA internal transcribed spacer region ITS1-5.8S-ITS2 (ITS), nuc 28S rDNA (28S), and portions of genes encoding translation elongation factor 1-α (tef1) and the second largest subunit of RNA polymerase II (rpb2). Eight genera are confirmed to include Neotropical species treated as Antrodiella in a broad sense: Aegis, Antrodiella s. str., Flaviporus, Metuloidea, Mycorrhaphium, Rickiopora, Trametopsis, and Trullella. Molecular data reveal the occurrence of two new species, described as Antrodiella trivialis, the only Neotropical species of Antrodiella s. str. known so far, and Mycorrhaphium hispidum. In addition, Antrodiella luteocontexta was found to nest in the genus Aegis, close to the Grifolaceae and Polyporaceae; therefore, the new combination Aegis luteocontexta is proposed. Comments on the eight Antrodiella-related genera as well as species with uncertain taxonomic position are provided, together with a key to their identification.


Assuntos
Variação Genética , Filogenia , Polyporales/classificação , Polyporales/genética , Brasil , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Fator 1 de Elongação de Peptídeos/genética , Polyporales/isolamento & purificação , RNA Polimerase II/genética , RNA Ribossômico 28S/genética , Análise de Sequência de DNA , Clima Tropical
14.
ISME J ; 12(3): 692-703, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29335638

RESUMO

Forest management practices often severely affect forest ecosystem functioning. Tree removal by clearcutting is one such practice, producing severe impacts due to the total reduction of primary productivity. Here, we assessed changes to fungal community structure and decomposition activity in the soil, roots and rhizosphere of a Picea abies stand for a 2-year period following clearcutting compared to data from before tree harvest. We found that the termination of photosynthate flow through tree roots into soil is associated with profound changes in soil, both in decomposition processes and fungal community composition. The rhizosphere, representing an active compartment of high enzyme activity and high fungal biomass in the living stand, ceases to exist and starts to resemble bulk soil. Decomposing roots appear to separate from bulk soil and develop into hotspots of decomposition and important fungal biomass pools. We found no support for the involvement of ectomycorrhizal fungi in the decomposition of roots, but we found some evidence that root endophytic fungi may have an important role in the early stages of this process. In soil, activity of extracellular enzymes also decreased in the long term following the end of rhizodeposition by tree roots.


Assuntos
Fungos/isolamento & purificação , Micorrizas/isolamento & purificação , Pinus/microbiologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Biomassa , Ecossistema , Fungos/classificação , Fungos/genética , Fungos/crescimento & desenvolvimento , Micobioma , Micorrizas/classificação , Micorrizas/genética , Micorrizas/crescimento & desenvolvimento , Rizosfera , Solo/química , Árvores/microbiologia
15.
Mycologia ; 109(1): 46-54, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28402783

RESUMO

Four new species of the Ascomycete genus Microglossum are recognized, based on morphological characters and DNA sequences of nuc rDNA (ITS region and 28S gene) and the second largest subunit of RNA polymerase II (RPB2). They differ from Microglossum nudipes by the color of the ascocarps and the sizes and shapes of ascospores, asci, and paraphyses. A lectotype is proposed, and an emended description is provided for M. nudipes. Descriptions of new species Microglossum clavatum, M. truncatum, M. pretense, and M. tenebrosum are provided. Other closely related species in the group of green earth tongues include Microglossum viride, M. rickii, and M. griseoviride. An identification key to green Microglossum species is presented.


Assuntos
Ascomicetos/classificação , Ascomicetos/genética , Variação Genética , Ascomicetos/citologia , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Filogenia , RNA Polimerase II/genética , RNA Ribossômico 28S/genética , Análise de Sequência de DNA , Esporos Fúngicos/citologia
16.
Mycologia ; 109(1): 75-91, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28402796

RESUMO

Armillaria possesses several intriguing characteristics that have inspired wide interest in understanding phylogenetic relationships within and among species of this genus. Nuclear ribosomal DNA sequence-based analyses of Armillaria provide only limited information for phylogenetic studies among widely divergent taxa. More recent studies have shown that translation elongation factor 1-α (tef1) sequences are highly informative for phylogenetic analysis of Armillaria species within diverse global regions. This study used Neighbor-net and coalescence-based Bayesian analyses to examine phylogenetic relationships of newly determined and existing tef1 sequences derived from diverse Armillaria species from across the Northern Hemisphere, with Southern Hemisphere Armillaria species included for reference. Based on the Bayesian analysis of tef1 sequences, Armillaria species from the Northern Hemisphere are generally contained within the following four superclades, which are named according to the specific epithet of the most frequently cited species within the superclade: (i) Socialis/Tabescens (exannulate) superclade including Eurasian A. ectypa, North American A. socialis (A. tabescens), and Eurasian A. socialis (A. tabescens) clades; (ii) Mellea superclade including undescribed annulate North American Armillaria sp. (Mexico) and four separate clades of A. mellea (Europe and Iran, eastern Asia, and two groups from North America); (iii) Gallica superclade including Armillaria Nag E (Japan), multiple clades of A. gallica (Asia and Europe), A. calvescens (eastern North America), A. cepistipes (North America), A. altimontana (western USA), A. nabsnona (North America and Japan), and at least two A. gallica clades (North America); and (iv) Solidipes/Ostoyae superclade including two A. solidipes/ostoyae clades (North America), A. gemina (eastern USA), A. solidipes/ostoyae (Eurasia), A. cepistipes (Europe and Japan), A. sinapina (North America and Japan), and A. borealis (Eurasia) clade 2. Of note is that A. borealis (Eurasia) clade 1 appears basal to the Solidipes/Ostoyae and Gallica superclades. The Neighbor-net analysis showed similar phylogenetic relationships. This study further demonstrates the utility of tef1 for global phylogenetic studies of Armillaria species and provides critical insights into multiple taxonomic issues that warrant further study.


Assuntos
Armillaria/classificação , Armillaria/genética , Fator 1 de Elongação de Peptídeos/genética , Filogenia , Ásia , Europa (Continente) , América do Norte , Análise de Sequência de DNA
17.
FEMS Microbiol Ecol ; 93(2)2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27789535

RESUMO

Fungi represent a group of soil microorganisms fulfilling important ecological functions. Although several studies have shown that yeasts represent a significant proportion of fungal communities, our current knowledge is based mainly on cultivation experiments. In this study, we used amplicon sequencing of environmental DNA to describe the composition of yeast communities in European temperate forest and to identify the potential biotic and abiotic drivers of community assembly. Based on the analysis of ITS2 PCR amplicons, yeasts represented a substantial proportion of fungal communities ranging from 0.4 to 14.3% of fungal sequences in soil and 0.2 to 9.9% in litter. The species richness at individual sites was 28 ± 9 in soil and 31 ± 11 in litter. The basidiomycetous yeasts dominated over ascomycetous ones. In litter, yeast communities differed significantly among beech-, oak- and spruce-dominated stands. Drivers of community assembly are probably more complex in soils and comprise the effects of environmental conditions and vegetation.


Assuntos
Biodiversidade , Florestas , Microbiologia do Solo , Leveduras/classificação , Fagus/microbiologia , Fungos/genética , Picea/microbiologia , Saccharomyces cerevisiae , Solo/química , Árvores/microbiologia , Leveduras/genética , Leveduras/crescimento & desenvolvimento
18.
Fungal Biol ; 120(8): 1002-1009, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27521631

RESUMO

Ceriporiopsis latemarginata and Antrodiella angulatopora are two Neotropical polypores that are very similar morphologically and are characterized by effused-reflexed basidiomes, large angular pores, small ellipsoid to ovoid basidiospores and a monomitic hyphal system with presence of thick-walled hyphae with infrequent clamps. In order to verify the evolutionary relations of C. latemarginata and to find its taxonomic placement, morphological, biological, and phylogenetic studies were carried out, as well as comparisons with Antrodiella s.s. and Ceriporiopsis s.s. Mono- and poly-sporic cultures were obtained and used for mating system and nuclear behaviour studies, as well as for DNA sequence analyses of the internal transcribed spacer and large subunit of ribosomal RNA gene, translation elongation factor 1-alpha gene and RNA polymerase II second largest subunit-like gene. Type specimens of C. latemarginata and A. angulatopora were morphologically examined and their synonymy was confirmed. The results obtained support the description of a new polypore genus Rickiopora in the residual polyporoid clade characterized by a bipolar mating system, an astatocoenocytic nuclear behaviour, and a monomitic hyphal system that display a metachromatic reaction in cresyl blue.


Assuntos
Polyporales/classificação , Polyporales/isolamento & purificação , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Genes Fúngicos Tipo Acasalamento , Microscopia , Fator 1 de Elongação de Peptídeos/genética , Filogenia , Polyporales/citologia , Polyporales/genética , RNA Polimerase II/genética , Análise de Sequência de DNA
19.
Fungal Biol ; 120(6-7): 836-51, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27268244

RESUMO

The Phytophthora cactorum species complex in Europe is composed of P. cactorum, Phytophthora hedraiandra, and a hybrid species Phytophthora × serendipita. Evolutionary analyses using the amplified fragment length polymorphism (AFLP) method were carried out on 133 isolates from 19 countries. The AFLP data were complemented by sequence analysis of three genes (ITS region of ribosomal RNA gene, phenolic acid decarboxylase - Pheca I, and Cytochrome oxidase - Cox I), morphometric analysis and cardinal temperature data. The high proportion of clonal genotypes, low gene flow among groups, which was defined by the structure analysis, and low Nei's gene diversity confirms the homothallic life cycle of the groups. On the other hand, the ITS, Cox I and Pheca I sequence data support occasional hybridization between species. The structure K = 5 grouping revealed two groups of hybrid origin (C2 and F). While the C2 group resembles P. × serendipita, the F group includes Finnish isolates characterized by high oogonial abortion rates and slow growth. The morphological characters routinely used in identification of Phytophthora species are not useful for delimitation of species from the P. cactorum complex. Therefore, we discuss the status of P. hedraiandra as a separate species. The epitypification of P. cactorum is proposed.


Assuntos
Evolução Molecular , Genótipo , Filogenia , Phytophthora/classificação , Phytophthora/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Análise por Conglomerados , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Europa (Continente) , Proteínas Fúngicas/genética , Análise de Sequência de DNA
20.
Fungal Biol ; 119(12): 1345-1353, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26615755

RESUMO

The strain Pleurotus ostreatus Florida f6, its 45 basidiospore-derived isolates (both monokaryons and dikaryons prepared in our laboratory), Trametes versicolor strain CCBAS 614 and 22 other T. versicolor isolates obtained from the sporocarps collected in distant localities were successfully preserved for 12 y using perlite and straw cryopreservation protocols. All tested isolates survived a 12-year storage in liquid nitrogen (LN) and their laccase production and Poly B411 decolorization capacity was preserved. Also mycelium extension rate and the types of colony appearance of individual isolates remained unchanged. Different cryopreservation techniques were also tested for the short time (24 h) and the long time (6 m) storage of the culture liquid with extracellular laccase produced by T. versicolor strain CCBAS 614. The results showed that 10 % glycerol was the most suitable cryopreservant. The absence of the cryopreservant did not cause high loss of laccase activity in the samples; the presence of DMSO (5 or 10 %) in LN-stored samples caused mostly a decrease of laccase activity. For the preservation of laccase activity in the liquid culture the storage in the freezer at -80 °C is more convenient than the storage in liquid nitrogen.


Assuntos
Criopreservação/métodos , Proteínas Fúngicas/análise , Lacase/metabolismo , Plantas/microbiologia , Pleurotus/química , Pleurotus/enzimologia , Trametes/química , Trametes/enzimologia , Proteínas Fúngicas/metabolismo , Lacase/análise , Viabilidade Microbiana , Pleurotus/crescimento & desenvolvimento , Pleurotus/isolamento & purificação , Trametes/crescimento & desenvolvimento , Trametes/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...