Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Digit Med ; 6(1): 207, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37968567

RESUMO

Heart rate (HR) response to workout intensity reflects fitness and cardiorespiratory health. Physiological models have been developed to describe such heart rate dynamics and characterize cardiorespiratory fitness. However, these models have been limited to small studies in controlled lab environments and are challenging to apply to noisy-but ubiquitous-data from wearables. We propose a hybrid approach that combines a physiological model with flexible neural network components to learn a personalized, multidimensional representation of fitness. The physiological model describes the evolution of heart rate during exercise using ordinary differential equations (ODEs). ODE parameters are dynamically derived via a neural network connecting personalized representations to external environmental factors, from area topography to weather and instantaneous workout intensity. Our approach efficiently fits the hybrid model to a large set of 270,707 workouts collected from wearables of 7465 users from the Apple Heart and Movement Study. The resulting model produces fitness representations that accurately predict full HR response to exercise intensity in future workouts, with a per-workout median error of 6.1 BPM [4.4-8.8 IQR]. We further demonstrate that the learned representations correlate with traditional metrics of cardiorespiratory fitness, such as VO2 max (explained variance 0.81 ± 0.003). Lastly, we illustrate how our model is naturally interpretable and explicitly describes the effects of environmental factors such as temperature and humidity on heart rate, e.g., high temperatures can increase heart rate by 10%. Combining physiological ODEs with flexible neural networks can yield interpretable, robust, and expressive models for health applications.

2.
IEEE Trans Biomed Circuits Syst ; 11(5): 1026-1040, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28715338

RESUMO

First, existing commercially available open-loop and closed-loop implantable neurostimulators are reviewed and compared in terms of their targeted application, physical size, system-level features, and performance as a medical device. Next, signal processing algorithms as the primary strength point of the closed-loop neurostimulators are reviewed, and various design and implementation requirements and trade-offs are discussed in details along with quantitative examples. The review results in a set of guidelines for algorithm selection and evaluation. Second, the implementation of an inductively-powered seizure-predicting microsystem for monitoring and treatment of intractable epilepsy is presented. The miniaturized system is comprised of two miniboards and a power receiver coil. The first board hosts a 24-channel neurostimulator system on chip fabricated in a [Formula: see text] CMOS technology and performs neural recording, on-chip digital signal processing, and electrical stimulation. The second board communicates recorded brain signals as well as signal processing results wirelessly. The multilayer flexible coil receives inductively-transmitted power. The system is sized at 2 × 2 × 0.7 [Formula: see text] and weighs 6 g. The approach is validated in the control of chronic seizures in vivo in freely moving rats.


Assuntos
Antinematódeos/uso terapêutico , Epilepsia Resistente a Medicamentos/terapia , Eletroencefalografia/métodos , Neuroestimuladores Implantáveis , Algoritmos , Animais , Encéfalo/fisiologia , Epilepsia Resistente a Medicamentos/veterinária , Estimulação Elétrica , Eletroencefalografia/instrumentação , Desenho de Equipamento , Ácido Caínico/uso terapêutico , Microeletrodos , Ratos , Convulsões/diagnóstico , Convulsões/veterinária , Tecnologia sem Fio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...