Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0304156, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38776324

RESUMO

Saliva substitutes with enhanced dentin remineralization properties were expected to help manage caries progression in patients with xerostomia. This in vitro study examined the rheological properties and remineralization action of experimental saliva substitutes containing propolis extract and aloe vera extract on demineralized dentin. Four experimental saliva substitutes were formulated with varying concentrations of propolis extract (P) and aloe vera extract (A) were prepared. A commercial saliva substitute (Biotene Oral Rinse) was used as a commercial comparison. The rheological properties and viscosity of these materials were measured using a strain-controlled rheometer (n = 3). The remineralizing actions of saliva substitutes on demineralized dentin after 2 weeks were determined using ATR-FTIR and SEM-EDX (n = 8). The results were expressed as a percentage increase in the mineral-to-matrix ratio. Biotene demonstrated a significantly higher viscosity (13.5 mPa·s) than experimental saliva substitutes (p<0.05). The addition of extracts increased the viscosity of the saliva substitutes from 4.7 mPa·s to 5.2 mPa·s. All formulations showed minimal shear thinning behavior, which was the viscoelastic properties of natural saliva. The formulation containing 5 wt% of propolis exhibited the highest increase in the median mineral-to-matrix ratio (25.48%). The SEM-EDX analysis revealed substantial mineral precipitation in demineralized dentin, especially in formulations with 5 wt% or 2.5 wt% of propolis. The effect of the aloe vera extract was minimal. The addition of propolis and aloe vera extracts increased the viscosity of saliva substitutes. the addition of propolis for 2.5 or 5 wt% to saliva substitutes increased mineral apatite precipitation and tubule occlusion. To conclude, the saliva substitute containing propolis extract demonstrated superior remineralizing actions compared with those containing only aloe vera extract.


Assuntos
Aloe , Dentina , Extratos Vegetais , Própole , Reologia , Saliva Artificial , Própole/química , Própole/farmacologia , Aloe/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Saliva Artificial/química , Dentina/química , Dentina/efeitos dos fármacos , Humanos , Viscosidade , Remineralização Dentária/métodos , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Int J Mol Sci ; 24(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37373383

RESUMO

This study prepared low-toxicity, elemental-releasing resin-modified glass ionomer cements (RMGICs). The effect of 2-hydroxyethyl methacrylate (HEMA, 0 or 5 wt%) and Sr/F-bioactive glass nanoparticles (Sr/F-BGNPs, 5 or 10 wt%) on chemical/mechanical properties and cytotoxicity were examined. Commercial RMGIC (Vitrebond, VB) and calcium silicate cement (Theracal LC, TC) were used as comparisons. Adding HEMA and increasing Sr/F-BGNPs concentration decreased monomer conversion and enhanced elemental release but without significant effect on cytotoxicity. Rising Sr/F-BGNPs reduced the strength of the materials. The degree of monomer conversion of VB (96%) was much higher than that of the experimental RMGICs (21-51%) and TC (28%). The highest biaxial flexural strength of experimental materials (31 MPa) was significantly lower than VB (46 MPa) (p < 0.01) but higher than TC (24 MPa). The RMGICs with 5 wt% HEMA showed higher cumulative fluoride release (137 ppm) than VB (88 ppm) (p < 0.01). Unlike VB, all experimental RMGICs showed Ca, P, and Sr release. Cell viability in the presence of extracts from experimental RMGICs (89-98%) and TC (93%) was significantly higher than for VB (4%). Experimental RMGICs showed desirable physical/mechanical properties with lower toxicity than the commercial material.


Assuntos
Metacrilatos , Nanopartículas , Teste de Materiais , Metacrilatos/toxicidade , Metacrilatos/química , Resinas Vegetais , Cimentos de Ionômeros de Vidro/toxicidade , Cimentos de Ionômeros de Vidro/química , Nanopartículas/toxicidade , Nanopartículas/química
3.
Nanomaterials (Basel) ; 12(11)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35683752

RESUMO

This study prepared composites for core build-up containing Sr/F bioactive glass nanoparticles (Sr/F-BGNPs) and monocalcium phosphate monohydrate (MCPM) to prevent dental caries. The effect of the additives on the physical/mechanical properties of the materials was examined. Dual-cured resin composites were prepared using dimethacrylate monomers with added Sr/F-BGNPs (5 or 10 wt%) and MCPM (3 or 6 wt%). The additives reduced the light-activated monomer conversion by ~10%, but their effect on the conversion upon self-curing was negligible. The conversions of light-curing or self-curing polymerization of the experimental materials were greater than that of the commercial material. The additives reduced biaxial flexural strength (191 to 155 MPa), modulus (4.4 to 3.3), and surface microhardness (53 to 45 VHN). These values were comparable to that of the commercial material or within the acceptable range of the standard. The changes in the experimental composites' mass and volume (~1%) were similar to that of the commercial comparison. The color change of the commercial material (1.0) was lower than that of the experimental composites (1.5-5.8). The addition of Sr/F-BGNPs and MCPM negatively affected the physical/mechanical properties of the composites, but the results were satisfactory except for color stability.

4.
J Funct Biomater ; 12(3)2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34287317

RESUMO

The aim of this study was to prepare experimental resin-modified glass ionomer cements (RMGICs) containing low levels of hydroxyethyl methacrylate (HEMA) for pulp protection. Liquid and powder phases of the experimental RMGICs were polyacid functionalized with methacrylate groups and spherical pre-reacted glass fillers (SPG). Two types of liquid phase containing 0 wt. % HEMA (CM liquid) or 5 wt. % HEMA (CMH liquid) were formulated. The experimental RMGICs were prepared by mixing SPG fillers with CM liquid (F1) or CMH liquid (F2). Rheological properties were examined using a strain-controlled rheometer (n = 5). The Vickers microhardness (n = 5) and dentin shear bond strength (SBS) (n = 10) of the materials were tested. Commercial pulp protection materials (Vitrebond and TheraCal LC) were used as comparisons. The viscosity and surface microhardness of F1 (22 m Pa·s, 18 VHN) and F2 (18 m Pa·s, 16 VHN) were significantly higher than those of Vitrebond (6 mPa·s, 6 VHN) and TheraCal (0.1 mPa·s, 7 VHN). The SBS of F1 (10.7 MPa) and F2 (11.9 MPa) was comparable to that of Vitrebond (15.4 MPa) but higher than that of TheraCal LC (5.6 MPa). The addition of 5 wt. % HEMA showed no significant effect on viscosity, surface microhardness, or SBS of the experimental RMGICs. The experimental materials showed higher viscosity and microhardness but similar SBS when compared with the commercial RMGIC.

5.
Braz Dent J ; 31(4): 445-452, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32901723

RESUMO

The aim of this study was to assess the effect of different commercial liquid phases (Ketac, Riva, and Fuji IX) and the use of spherical pre-reacted glass (SPG) fillers on cement maturation, fluoride release, compressive (CS) and biaxial flexural strength (BFS) of experimental glass ionomer cements (GICs). The experimental GICs (Ketac_M, Riva_M, FujiIX_M) were prepared by mixing SPG fillers with commercial liquid phases using the powder to liquid mass ratio of 2.5:1. FTIR-ATR was used to assess the maturation of GICs. Diffusion coefficient of fluoride (DF) and cumulative fluoride release (CF) in deionized water was determined using the fluoride ion specific electrode (n=3). CS and BFS at 24 h were also tested (n=6). Commercial GICs were used as comparisons. Riva and Riva_M exhibited rapid polyacrylate salt formation. The highest DF and CF were observed with Riva_M (1.65x10-9 cm2/s) and Riva (77 ppm) respectively. Using SPG fillers enhanced DF of GICs on average from ~2.5x10-9 cm2/s to ~3.0x10-9 cm2/s but reduced CF of the materials on average from ~51 ppm to ~42 ppm. The CS and BFS of Ketac_M (144 and 22 MPa) and Fuji IX_M (123 and 30 MPa) were comparable to commercial materials. Using SPG with Riva significantly reduced CS and BFS from 123 MPa to 55 MPa and 42 MPa to 28 MPa respectively. The use of SPG fillers enhanced DF but reduced CF of GICs. Using SPG with Ketac or Fuji IX liquids provided comparable strength to the commercial materials.


Assuntos
Cimentos Dentários , Cimentos de Ionômeros de Vidro , Força Compressiva , Teste de Materiais , Resistência à Tração
6.
Braz. dent. j ; 31(4): 445-452, July-Aug. 2020. tab, graf
Artigo em Inglês | LILACS, BBO - Odontologia | ID: biblio-1132320

RESUMO

Abstract The aim of this study was to assess the effect of different commercial liquid phases (Ketac, Riva, and Fuji IX) and the use of spherical pre-reacted glass (SPG) fillers on cement maturation, fluoride release, compressive (CS) and biaxial flexural strength (BFS) of experimental glass ionomer cements (GICs). The experimental GICs (Ketac_M, Riva_M, FujiIX_M) were prepared by mixing SPG fillers with commercial liquid phases using the powder to liquid mass ratio of 2.5:1. FTIR-ATR was used to assess the maturation of GICs. Diffusion coefficient of fluoride (DF) and cumulative fluoride release (CF) in deionized water was determined using the fluoride ion specific electrode (n=3). CS and BFS at 24 h were also tested (n=6). Commercial GICs were used as comparisons. Riva and Riva_M exhibited rapid polyacrylate salt formation. The highest DF and CF were observed with Riva_M (1.65x10-9 cm2/s) and Riva (77 ppm) respectively. Using SPG fillers enhanced DF of GICs on average from ~2.5x10-9 cm2/s to ~3.0x10-9 cm2/s but reduced CF of the materials on average from ~51 ppm to ~42 ppm. The CS and BFS of Ketac_M (144 and 22 MPa) and Fuji IX_M (123 and 30 MPa) were comparable to commercial materials. Using SPG with Riva significantly reduced CS and BFS from 123 MPa to 55 MPa and 42 MPa to 28 MPa respectively. The use of SPG fillers enhanced DF but reduced CF of GICs. Using SPG with Ketac or Fuji IX liquids provided comparable strength to the commercial materials.


Resumo O objetivo deste estudo foi avaliar o efeito de diferentes fases líquidas comerciais (Ketac, Riva e Fuji IX) e o uso de partículas esféricas de vidro pré-reagido (SPG) na maturação do cimento, liberação de flúor, força de compressão (CS) e resistência biaxial à flexão (BFS) de cimentos de ionômero de vidro (GICs) experimentais. Os GICs experimentais (Ketac_M, Riva_M, FujiIX_M) foram preparados pela mistura de partículas SPG com fases líquidas comerciais usando a proporção de pó para massa líquida de 2,5: 1. O FTIR-ATR foi usado para avaliar a maturação dos GICs. O coeficiente de difusão do flúor (DF) e a liberação cumulativa de flúor (CF) em água deionizada foram determinados usando o eletrodo específico do íon fluoreto (n = 3). CS e BFS em 24 h também foram testados (n = 6). GICs comerciais foram usados como comparações. Riva e Riva_M exibiram rápida formação de sal de poliacrilato. Os maiores DF e CF foram observados com Riva_M (1,65x10-9 cm2/s) e Riva (77 ppm), respectivamente. O uso de partículas SPG melhorou o DF de GICs em média de ~ 2,5x10-9 cm2/s a ~ 3,0x10-9 cm2/s, mas reduziu o CF dos materiais em média de ~ 51 ppm a ~ 42 ppm. O CS e BFS de Ketac_M (144 e 22 MPa) e Fuji IX_M (123 e 30 MPa) foram comparáveis aos materiais comerciais. Usar SPG com Riva reduziu significativamente CS e BFS de 123 MPa para 55 MPa e 42 MPa para 28 MPa, respectivamente. O uso de SPG partículas melhorou o DF, mas reduziu o CF dos GICs. O uso de partículas SPG com líquidos Ketac ou Fuji IX proporcionou resistência comparável aos materiais comerciais.


Assuntos
Cimentos Dentários , Cimentos de Ionômeros de Vidro , Resistência à Tração , Teste de Materiais , Força Compressiva
7.
Dent Mater J ; 39(4): 608-615, 2020 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-32037385

RESUMO

The aim of this study was to assess monomer conversion, dimensional stability (mass and volume changes), biaxial flexural strength (BFS), and fluoride release of recently developed resin composites containing alkaline fillers (Cention N; CN) compared with resin-modified glass ionomer cements (RMGICs: Riva LC; RL and Fuji II LC; FL), and conventional composite (Z350). FL showed highest monomer conversion (88±2%) followed by RL (73±10%), CN (59±2%), and Z350 (50±2%). RL exhibited highest mass and volume increase (10.22±0.04 wt% and 19.4±0.2 vol%). CN exhibited higher BFS (180±20 MPa) than RMGICs but lower than Z350 (248±27 MPa). The highest cumulative fluoride release at 6 weeks was observed with RL (136±22 ppm) followed by CN (36±4 ppm) and FL (30±3 ppm). CN exhibited monomer conversion higher than the composite. CN also released fluoride in the range of that observed with RMGICs but with higher flexural strength.


Assuntos
Resistência à Flexão , Fluoretos , Resinas Compostas , Materiais Dentários , Cimentos de Ionômeros de Vidro , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...