Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2403929, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744294

RESUMO

2D polarization materials have emerged as promising candidates for meeting the demands of device miniaturization, attributed to their unique electronic configurations and transport characteristics. Although the existing inherent and sliding mechanisms are increasingly investigated in recent years, strategies for inducing 2D polarization with innovative mechanisms remain rare. This study introduces a novel 2D Janus state by modulating the puckered structure. Combining scanning probe microscopy, transmission electron microscopy, and density functional theory calculations, this work realizes force-triggered out-of-plane and in-plane dipoles with distorted smaller warping in GeSe. The Janus state is preserved after removing the external mechanical perturbation, which could be switched by modulating the sliding direction. This work offers a versatile method to break the space inversion symmetry in a 2D system to trigger polarization in the atomic scale, which may open an innovative insight into configuring novel 2D polarization materials.

2.
Mater Horiz ; 11(5): 1325-1333, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38174937

RESUMO

Low-dimensional ferroelectric tunnel junctions are appealing for the realization of nanoscale nonvolatile memory devices due to their inherent advantages of device miniaturization. Those based on current mechanisms have limitations, including low tunneling electroresistance (TER) effects and complex heterostructures. Here, we introduce an entirely new TER mechanism to construct a nanotube ferroelectric tunnel junction with ferroelectric nanotubes as the tunneling region. When rolling a ferroelectric monolayer into a nanotube, due to the coexistence of its intrinsic ferroelectric polarization with the flexoelectric polarization induced by bending, a metal-insulator transition occurs depending on the radiative polarization states. For the pristine monolayer, its out-of-plane polarization is tunable by an in-plane electric field, and the conducting states of the ferroelectric nanotube can thus be tuned between metallic and insulating states via axial electric means. Using α-In2Se3 as an example, our first-principles density functional theory calculations and nonequilibrium Green's function formalism confirm the feasibility of the TER mechanism and indicate an ultrahigh TER ratio that exceeds 9.9 × 1010% of the proposed nanotube ferroelectric tunnel junctions. Our findings provide a promising approach based on simple homogeneous structures for high density ferroelectric microelectric devices with excellent ON/OFF performance.

3.
J Phys Condens Matter ; 34(20)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35193130

RESUMO

Spin-orbit coupling (SOC) plays an important role in condensed matter physics and has potential applications in spintronics devices. In this paper, we study the electronic properties of ferroelectric CuInP2S6(CIPS) monolayer through first-principles calculations. The result shows that CIPS monolayer is a potential for valleytronics material and we find that the in-plane helical and nonhelical pseudospin texture are induced by the Rashba and Dresselhaus effect, respectively. The chirality of helical pseudospin texture is coupled to the out-of-plane ferroelectric polarization. Furthermore, a large spin splitting due to the SOC effect can be found atKvalley, which can be regarded as the Zeeman effect under a valley-dependent pseudomagnetic field. The CIPS monolayer with Rashbaet aleffects provides a good platform for electrically controlled spin polarization physics.

4.
Proc Natl Acad Sci U S A ; 115(34): 8511-8516, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30076226

RESUMO

Engineering the electronic band structure of material systems enables the unprecedented exploration of new physical properties that are absent in natural or as-synthetic materials. Half metallicity, an intriguing physical property arising from the metallic nature of electrons with singular spin polarization and insulating for oppositely polarized electrons, holds a great potential for a 100% spin-polarized current for high-efficiency spintronics. Conventionally synthesized thin films hardly sustain half metallicity inherited from their 3D counterparts. A fundamental challenge, in systems of reduced dimensions, is the almost inevitable spin-mixed edge or surface states in proximity to the Fermi level. Here, we predict electric field-induced half metallicity in bilayer A-type antiferromagnetic van der Waals crystals (i.e., intralayer ferromagnetism and interlayer antiferromagnetism), by employing density functional theory calculations on vanadium diselenide. Electric fields lift energy levels of the constituent layers in opposite directions, leading to the gradual closure of the gap of singular spin-polarized states and the opening of the gap of the others. We show that a vertical electrical field is a generic and effective way to achieve half metallicity in A-type antiferromagnetic bilayers and realize the spin field effect transistor. The electric field-induced half metallicity represents an appealing route to realize 2D half metals and opens opportunities for nanoscale highly efficient antiferromagnetic spintronics for information processing and storage.

5.
J Phys Condens Matter ; 29(47): 475803, 2017 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-29094679

RESUMO

Considerable progress in contemporary spintronics has been made in recent years for developing nanoscale data memory and quantum information processing. It is, however, still a great challenge to achieve the ultimate limit of storage bit. 2D materials, fortunately, provide an alternative solution for designing materials with the expected miniaturizing scale, chemical stability as well as giant magnetic anisotropy energy. By performing first-principles calculations, we have examined two possible doping sites on a WS2 monolayer using three kinds of transition metal (TM) atoms (Mn, Fe and Co). It is found that the TM atoms prefer to stay on the W atom site. Additionally, differently from the case of Mn, doping Co and Fe atoms on the W vacancy can achieve perpendicular magnetic anisotropy with a much larger magnitude, which provides a bright prospect for generating atomic-scale magnets of storage devices.

6.
Nat Commun ; 7: 13612, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27982088

RESUMO

Valleytronics rooted in the valley degree of freedom is of both theoretical and technological importance as it offers additional opportunities for information storage, as well as electronic, magnetic and optical switches. In analogy to ferroelectric materials with spontaneous charge polarization, or ferromagnetic materials with spontaneous spin polarization, here we introduce a new member of ferroic family, that is, a ferrovalley material with spontaneous valley polarization. Combining a two-band k·p model with first-principles calculations, we show that 2H-VSe2 monolayer, where the spin-orbit coupling coexists with the intrinsic exchange interaction of transition-metal d electrons, is such a room-temperature ferrovalley material. We further predict that such system could demonstrate many distinctive properties, for example, chirality-dependent optical band gap and, more interestingly, anomalous valley Hall effect. On account of the latter, functional devices based on ferrovalley materials, such as valley-based nonvolatile random access memory and valley filter, are contemplated for valleytronic applications.

7.
Sci Rep ; 5: 17993, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26648508

RESUMO

Magnetic ordering could have significant influence on band structures, spin-dependent transport, and other important properties of materials. Its measurement, especially for the case of antiferromagnetic (AFM) ordering, however, is generally difficult to be achieved. Here we demonstrate the feasibility of magnetic ordering detection using a noncontact and nondestructive optical method. Taking the tetragonal BiFeO3 (BFO) as an example and combining density functional theory calculations with tight-binding models, we find that when BFO changes from C1-type to G-type AFM phase, the top of valance band shifts from the Z point to Γ point, which makes the original direct band gap become indirect. This can be explained by Slater-Koster parameters using the Harrison approach. The impact of magnetic ordering on band dispersion dramatically changes the optical properties. For the linear ones, the energy shift of the optical band gap could be as large as 0.4 eV. As for the nonlinear ones, the change is even larger. The second-harmonic generation coefficient d33 of G-AFM becomes more than 13 times smaller than that of C1-AFM case. Finally, we propose a practical way to distinguish the two AFM phases of BFO using the optical method, which is of great importance in next-generation information storage technologies.

8.
J Phys Condens Matter ; 27(7): 076003, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25629772

RESUMO

Atomic-scale magnetic nanostructures are promising candidates for future information processing devices. Utilizing external electric field to manipulate their magnetic properties is an especially thrilling project. Here, by carefully identifying the different contributions of each atomic orbital to the magnetic anisotropy energy (MAE) of the ferromagnetic metal films, we argue that it is possible to engineer both the MAE and the magnetic response to the electric field of atomic-scale magnetic nanostructures. Taking the iron monolayer as a matrix, we propose several interesting iron nanostructures with dramatically different magnetic properties. Such nanostructures could exhibit a strong magnetoelectric effect. Our work may open new avenues to the artificial design of electrically controlled magnetic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...