Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Musculoskelet Disord ; 25(1): 122, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336637

RESUMO

AIM: This study aimed to investigate the effect and mechanism of bone marrow mesenchymal stem cell-derived exosomes on osteoblast function. METHODS: The expression of KLF3-AS1 and miR-338-3p in serum of fracture patients was detected by qRT-PCR. Exosomes from BMSCs were isolated by ultrafast centrifugation. MC3T3-E1 cells were cultured in vitro as experimental cells. Intracellular gene expression was regulated by transfection of si-KLF3-AS1 or miR-338-3p inhibitors. MTT assay, Transwell assay and flow cytometry were used to evaluate cell viability, migration, and apoptosis. The luciferase reporter gene was used to verify the targeting relationship between KLF3-AS1 and miR-338-3p. Bioinformatics analysis was used to identify the basic functions and possible enrichment pathways of miR-338-3p target genes. RESULTS: The expressions of KLF3-AS1 and miR-338-3p in the serum of fracture patients were down-regulated and up-regulated, respectively. The expression of KLF3-AS1 was increased in MC3T3-E1 cells cultured with BMSCs-Exo, while the viability and migration ability of MC3T3-E1 cells were enhanced, and the apoptosis ability was weakened. Further analysis revealed miR-338-3p was the target gene of KLF3-AS1. The expression of miR-338-3p was downregulated in MC3T3-E1 cells cultured with BMSCs-Exo. Inhibition of miR-338-3p in MC3T3-E1 cells enhanced the viability and migration ability of MC3T3-E1 cells when cultured with BMSCs-Exo, while suppressing apoptosis. Bioinformatics analysis demonstrated that the target genes of miR-338-3p were predominantly localized at the axon's initiation site, involved in biological processes such as development and growth regulation, and mainly enriched in MAPK and ErbB signaling pathways. CONCLUSION: In vitro, BMSCs-Exo exhibits the capacity to enhance proliferation and migration while inhibiting apoptosis of MC3T3-E1 cells, potentially achieved through modulation of KLF3-AS1 and miR-338-3p expression in MC3T3-E1 cells.


Assuntos
Fenômenos Biológicos , Exossomos , Células-Tronco Mesenquimais , MicroRNAs , RNA Longo não Codificante , Humanos , Apoptose/genética , Proliferação de Células/genética , Exossomos/genética , Exossomos/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoblastos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
2.
Phlebology ; 39(3): 154-168, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37992130

RESUMO

Deep vein thrombosis (DVT) of the lower extremities is one of the most common peripheral vascular diseases, with significant complications and sequelae. Metabolomics aims to identify small molecules in biological samples. It can serve as a promising method for screening compounds that can be used for early disease detection, diagnosis, treatment response prediction, and prognosis. In addition, high-throughput metabolomics screening can yield significant insights into the pathophysiological pathways of DVT. Currently, the metabolomic profiles of DVT have yielded inconsistent expression patterns. This article examines the recent advancements in metabolomic studies of DVT and analyzes the factors that may influence the results.


Assuntos
Trombose Venosa , Humanos , Trombose Venosa/etiologia , Extremidade Inferior/irrigação sanguínea , Prognóstico , Progressão da Doença , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...