Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuroimage ; 284: 120475, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38013009

RESUMO

Age-related hearing loss (ARHL), one of the most common sensory deficits in elderly individuals, is a risk factor for dementia; however, it is unclear how ARHL affects the decline in cognitive function. To address this issue, a connectome gradient framework was used to identify critical features of information integration between sensory and cognitive processing centers using resting-state functional magnetic resonance imaging (rs-fMRI) data from 40 individuals with ARHL and 36 healthy controls (HCs). The first three functional gradient alterations associated with ARHL were investigated at the global, network and regional levels. Using a support vector machine (SVM) model, our analysis distinguished individuals with ARHL with normal cognitive function from those with cognitive decline. Compared to HCs, individuals with ARHL had a contracted principal primary-to-transmodal gradient axis, especially in the visual and default mode networks, with an altered gradient explained ratio and variance. Among individuals with ARHL, cognitive decline was detected in the visual network in the principal gradient as well as in the limbic, salience and default mode networks in the third gradient (salience to frontoparietal/default mode). These results suggest that ARHL is associated with disrupted information processing from the primary sensory networks to higher-order cognitive networks and highlight the key nodes closely associated with cognitive decline during cognitive processing in ARHL, providing new insights into the mechanism of cognitive impairment and suggesting potential treatments related to ARHL.


Assuntos
Disfunção Cognitiva , Conectoma , Presbiacusia , Humanos , Idoso , Conectoma/métodos , Cognição , Fatores de Risco , Imageamento por Ressonância Magnética/métodos
2.
Eur J Neurosci ; 58(4): 3026-3036, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37337805

RESUMO

Previous studies have suggested that the Papez circuit may be involved in the cognitive impairment observed after hearing loss in presbycusis patients, yet relatively little is known about the pattern of changes in effective connectivity within the circuit. The aim of this study was to investigate abnormal alterations in resting-state effective connectivity within the Papez circuit and their association with cognitive decline in presbycusis patients. The spectral dynamic causal modelling (spDCM) approach was used for resting-state effective connectivity analysis in 61 presbycusis patients and 52 healthy controls (HCs) within the Papez circuit. The hippocampus (HPC), mamillary body (MB), anterior thalamic nuclei (ATN), anterior cingulate cortex (ACC), posterior cingulate cortex (PCC), entorhinal cortex (ERC), subiculum (Sub) and parahippocampal gyrus (PHG) were selected as the regions of interest (ROIs). The fully connected model difference in effective connectivity between the two groups was assessed, and the correlation between effective connectivity alteration and cognitive scale was analysed. We found that presbycusis patients demonstrated decreased effective connectivity from MB, PCC, and Sub to ACC relative to HCs, whereas higher effective connectivity strength was shown from HPC to MB, from ATN to PHG and from PHG to Sub. The effective connectivity from PHG to Sub was significantly negatively correlated with the complex figure test (CFT)-delay score (rho = -0.259, p = 0.044). The results support and reinforce the role of abnormal effective connectivity within the Papez circuit in the pathophysiology of presbycusis-related cognitive impairment and reveal its potential as a novel imaging marker.

3.
Ear Hear ; 44(4): 670-681, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36534646

RESUMO

OBJECTIVES: Chronic subjective tinnitus can have a serious effect on daily life, even causing serious psychological disorders. Currently there are no specific effective solutions or cures. Tailor-made notched music training (TMNMT) is a recently proposed sound therapy that has simpler processes and a higher compliance rate than tinnitus retraining therapy (TRT), a widely used treatment for chronic subjective tinnitus. This study explores the therapeutic effect of TMNMT in comparison to TRT to highlight its clinical value. DESIGN: The study was a randomized controlled, single-blinded clinical trial. One hundred twenty eligible participants were randomly assigned to receive TMNMT (n = 60) or TRT (n = 60) for 3 mo with concurrent follow-up. It should be noted that the duration of sound treatment in TRT was modified to 2 hr per day for better feasibility in practice. The primary outcome was mean change in tinnitus handicap inventory (THI) measured at baseline ( T0 ), 1 mo ( T1 ) and 3 mo ( T2 ) after intervention. Change in visual analog scale (VAS) was measured as a secondary outcome. A comparison of therapeutic effectiveness between TMNMT and TRT was evaluated by repeated measure analysis of variance. RESULTS: One hundred and twelve (93%) of participants took part in the study, of which 64 were men and 48 women. Mean (SD) age was 42.80 (12.91) years. Fifty-eight were allocated to receive TMNMT and 54 to receive TRT. The between-group difference in primary outcome was -6.90 points (95% confidence interval [CI], -13.53 to -0.27) at T1 and -6.17 points (95% CI, -13.04 to 0.71) at T2 . These results closely reached to clinical significance of tinnitus-related effective relief. For the secondary outcome, the mean value in the TMNMT group was 0.83 points (95% CI, 0.12 to 1.54), significantly lower than the mean value of the TRT group. The differences in THI and VAS between the two groups were statistically significant after intervention. Further analysis showed that age and baseline THI and VAS scores were associated with change in THI and VAS scores after interventions. CONCLUSIONS: Both TMNMT and TRT were able to alleviate chronic subjective tinnitus effectively after a 3 month intervention. When the two forms of therapy were compared TMNMT appeared to be more effective and consequently potentially superior to TRT for reducing tinnitus loudness and functional and emotional disturbance associated with chronic subjective tinnitus.


Assuntos
Música , Zumbido , Masculino , Humanos , Adulto , Feminino , Zumbido/psicologia , Resultado do Tratamento , Som , Escala Visual Analógica
4.
Adv Mater ; 34(39): e2203485, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35962631

RESUMO

Heterostructure construction of layered metal chalcogenides can boost their alkali-metal storage performance, where the charge transfer kinetics can be promoted by the built-in electric fields. However, these heterostructures usually undergo interface separation due to severe layer expansion, especially for large-size potassium accommodation, resulting in the deconstruction of heterostructures and battery performance fading. Herein, first a stable interface design strategy where two metal chalcogenides with totally different layer-morphologies are stacked to form large K+ transport channels, rendering ultralow interlayer expansion, is presented. As a proof of concept, the flat-zigzag MoS2 /Bi2 S3 heterostructures stacked with zigzag-morphology Bi2 S3 and flat-morphology MoS2 present an ultralow expansion ratio (1.98%) versus MoS2 (9.66%) and Bi2 S3 (9.61%), which deliver an ultrahigh potassium storage capacity of above 600 mAh g-1 and capacity retention of 76% after 500 cycles, together with the built-in electric field of heterostructures. Once the heterostructures are used as an anode for potassium-based dual-ion batteries (K-DIBs), it achieves a superior full-cell capacity of ≈166 mAh g-1 with a capacity retention of 71% after 400 cycles, which is an outstanding performance among the reported K-DIBs. This proposed interface stacking strategy may offer a new way toward stable heterostructure design for metal ions storage and transport applications.

5.
Angew Chem Int Ed Engl ; 60(21): 11835-11840, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33723907

RESUMO

Redox-active organics are investigation hotspots for metal ion storage due to their structural diversity and redox reversibility. However, they are plagued by limited storage capacity, sluggish ion diffusion kinetics, and weak structural stability, especially for K+ ion storage. Herein, we firstly reported the lamellar tetrapotassium pyromellitic (K4 PM) with four active sites and large interlayer distance for K+ ion storage based on a design strategy, where organics are constructed with the small molecular mass, multiple active sites, fast ion diffusion channels, and rigid conjugated π bonds. The K4 PM electrode delivers a high capacity up to 292 mAh g-1 at 50 mA g-1 , among the best reported organics for K+ ion storage. Especially, it achieves an excellent rate capacity and long-term cycling stability with a capacity retention of ≈83 % after 1000 cycles. Incorporating in situ and ex-situ techniques, the K+ ion storage mechanism is revealed, where conjugated carboxyls are reversibly rearranged into enolates to stably store K+ ions. This work sheds light on the rational design and optimization of organic electrodes for efficient metal ion storage.

6.
Micromachines (Basel) ; 13(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35056197

RESUMO

Rapid fabricating and harnessing stimuli-responsive behaviors of microscale bio-compatible hydrogels are of great interest to the emerging micro-mechanics, drug delivery, artificial scaffolds, nano-robotics, and lab chips. Herein, we demonstrate a novel femtosecond laser additive manufacturing process with smart materials for soft interactive hydrogel micro-machines. Bio-compatible hyaluronic acid methacryloyl was polymerized with hydrophilic diacrylate into an absorbent hydrogel matrix under a tight topological control through a 532 nm green femtosecond laser beam. The proposed hetero-scanning strategy modifies the hierarchical polymeric degrees inside the hydrogel matrix, leading to a controllable surface tension mismatch. Strikingly, these programmable stimuli-responsive matrices mechanized hydrogels into robotic applications at the micro/nanoscale (<300 × 300 × 100 µm3). Reverse high-freedom shape mutations of diversified microstructures were created from simple initial shapes and identified without evident fatigue. We further confirmed the biocompatibility, cell adhesion, and tunable mechanics of the as-prepared hydrogels. Benefiting from the high-efficiency two-photon polymerization (TPP), nanometer feature size (<200 nm), and flexible digitalized modeling technique, many more micro/nanoscale hydrogel robots or machines have become obtainable in respect of future interdisciplinary applications.

7.
Brain Imaging Behav ; 15(1): 453-463, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32979169

RESUMO

To investigate resting-state connectivity and further understand directional aspects of implicit alterations in presbycusis patients, we used degree centrality (DC) and Granger causality analysis (GCA) to detect functional hubs of the whole-brain network and then analyze directional connectivity. Resting-state functional magnetic resonance imaging (fMRI) scans were performed on 40 presbycusis patients and 40 healthy controls matched for age, gender, and education. We used DC analysis and GCA to characterize abnormal brain networks in presbycusis patients. The associations of network centrality and directed functional connectivity (FC) with clinical measures of presbycusis were also examined according to the above results. We found that the network centrality of left frontal middle gyrus (MFG) was significantly lower than that of healthy control group. Unidirectionally, the left MFG revealed increased directional connectivity to the left superior frontal gyrus (SFG), while the left MFG exhibited decreased directional connectivity to the left middle temporal gyrus (MTG) and right lingual gyrus (LinG). And the decreased directional connectivity was found from the left precentral gyrus (PrCG) to the left MFG. In addition, the Trail-Making Test B (TMT-B) score was negatively correlated with the decreased DC of the left MFG (r = -0.359, p = 0.032). Resting-state fMRI provides a novel method for identifying aberrant brain network architecture. These results primarily indicate altered functional hubs and abnormal frontal lobe connectivity patterns that may further reflect executive dysfunction in patients with presbycusis.


Assuntos
Presbiacusia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Lobo Frontal , Humanos , Imageamento por Ressonância Magnética
8.
Front Neurosci ; 14: 592, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714128

RESUMO

PURPOSE: The neural bases in acute tinnitus remains largely undetected. The objective of this study was to identify the alteration of the brain network involved in patients with acute tinnitus and hearing loss. METHODS: Acute tinnitus patients (n = 24) with hearing loss and age-, sex-, education-matched healthy controls (n = 21) participated in the current study and underwent resting-state functional magnetic resonance imaging (fMRI) scanning. Regional homogeneity and amplitude of low-frequency fluctuation were used to investigate the local spontaneous neural activity and functional connectivity (FC), and Granger causality analysis (GCA) was used to analyze the undirected and directed connectivity of brain regions. RESULTS: Compared with healthy subjects, acute tinnitus patients had a general reduction in FC between auditory and non-auditory brain regions. Based on FC analysis, the superior temporal gyrus (STG) revealed reduced undirected connectivity with non-auditory brain regions including the amygdala (AMYG), nucleus accumbens (NAc), the cerebellum, and postcentral gyrus (PoCG). Using the GCA algorithm, increased effective connectivity from the right AMYG to the right STG, and reduced connectivity from the right PoCG to the left NAc was observed in acute tinnitus patients with hearing loss. The pure-tone threshold was positively correlated with FC between the AMYG and STG, and negatively correlated with FC between the left NAc and the right PoCG. In addition, a negative association between the GCA value from the right PoCG to the left NAc and the THI scores was observed. CONCLUSION: Acute tinnitus patients have aberrant FC strength and causal connectivity in both the auditory and non-auditory cortex, especially in the STG, AMYG, and NAc. The current findings will provide a new perspective for understanding the neuropathophysiological mechanism in acute tinnitus.

9.
Ultrason Sonochem ; 68: 105181, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32485625

RESUMO

A novel method of laser cavitation (LC) was proposed for degrading organic dye wastewater. Rhodamine B (RhB) aqueous solution was employed as the simulated organic dye wastewater, and a LC system was designed to conduct the experiments of degrading RhB. The effects of laser energy, initial concentration and cavitation time on the degradation were investigated. Moreover, the degradation kinetics, degradation mechanism and energy efficiency were analyzed. The experimental results indicate that RhB aqueous solution can be degraded effectively by LC and the degradation follows the pseudo-first-order kinetics. The extent of degradation increases by 27.6% with the rise of laser energy (50-100 mJ) while it decreases by 7.8% with increasing the initial concentration from (20-40 mg/L), but RhB can not be degraded when exceeding 100 mg/L. The degradation extent of RhB at 100 mJ and 20 mg/L for 3 h is 81.11%, and the RhB solution is almost completely degraded at 150 mJ (98.4%). The degradation velocity of RhB rises firstly and then decreases as the cavitation time increases. The degradation of RhB by LC can be attributed to the N-de-ethylation and chromophore cleavage caused by oxidation of hydroxyl (OH) radical and thermal decomposition. LC has a higher energy efficiency compared with other methods and is more energy efficient at lower laser energy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...