Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(36): 11232-11238, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39213644

RESUMO

Interlayer excitons in transition-metal dichalcogenide heterobilayers combine high binding energy and valley-contrasting physics with a long optical lifetime and strong dipolar character. Their permanent electric dipole enables electric-field control of the emission energy, lifetime, and location. Device material and geometry impact the nature of the interlayer excitons via their real- and momentum-space configurations. Here, we show that interlayer excitons in MoS2/MoSe2 heterobilayers are formed by charge carriers residing at the Brillouin zone edges, with negligible interlayer hybridization. We find that the moiré superlattice leads to the reversal of the valley-dependent optical selection rules, yielding a positively valued g-factor and cross-polarized photoluminescence. Time-resolved photoluminescence measurements reveal that the interlayer exciton population retains the optically induced valley polarization throughout its microsecond-long lifetime. The combination of a long optical lifetime and valley polarization retention makes MoS2/MoSe2 heterobilayers a promising platform for studying fundamental bosonic interactions and developing excitonic circuits for optical information processing.

2.
Phys Rev Lett ; 132(20): 206903, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38829069

RESUMO

Emitter dephasing is one of the key issues in the performance of solid-state single-photon sources. Among the various sources of dephasing, acoustic phonons play a central role in adding decoherence to the single-photon emission. Here, we demonstrate that it is possible to tune and engineer the coherence of photons emitted from a single WSe_{2} monolayer quantum dot via selectively coupling it to a spectral cavity resonance. We utilize an open cavity to demonstrate spectral enhancement, leveling, and suppression of the highly asymmetric phonon sideband, finding excellent agreement with a microscopic description of the exciton-phonon dephasing in a truly two-dimensional system. Moreover, the impact of cavity tuning on the dephasing is directly assessed via optical interferometry, which points out the capability to utilize light-matter coupling to steer and design dephasing and coherence of quantum emitters in atomically thin crystals.

3.
Nat Commun ; 15(1): 4254, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762501

RESUMO

Excitons in two-dimensional (2D) semiconductors have offered an attractive platform for optoelectronic and valleytronic devices. Further realizations of correlated phases of excitons promise device concepts not possible in the single particle picture. Here we report tunable exciton "spin" orders in WSe2/WS2 moiré superlattices. We find evidence of an in-plane (xy) order of exciton "spin"-here, valley pseudospin-around exciton filling vex = 1, which strongly suppresses the out-of-plane "spin" polarization. Upon increasing vex or applying a small magnetic field of ~10 mT, it transitions into an out-of-plane ferromagnetic (FM-z) spin order that spontaneously enhances the "spin" polarization, i.e., the circular helicity of emission light is higher than the excitation. The phase diagram is qualitatively captured by a spin-1/2 Bose-Hubbard model and is distinct from the fermion case. Our study paves the way for engineering exotic phases of matter from correlated spinor bosons, opening the door to a host of unconventional quantum devices.

4.
Adv Mater ; 36(30): e2403583, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38743929

RESUMO

2D Janus Transition Metal Dichalcogenides (TMDs) have attracted much interest due to their exciting quantum properties arising from their unique two-faced structure, broken-mirror symmetry, and consequent colossal polarization field within the monolayer. While efforts are made to achieve high-quality Janus monolayers, the existing methods rely on highly energetic processes that introduce unwanted grain-boundary and point defects with still unexplored effects on the material's structural and excitonic properties Through high-resolution scanning transmission electron microscopy (HRSTEM), density functional theory (DFT), and optical spectroscopy measurements; this work introduces the most encountered and energetically stable point defects. It establishes their impact on the material's optical properties. HRSTEM studies show that the most energetically stable point defects are single (VS and VSe) and double chalcogen vacancy (VS -VSe), interstitial defects (Mi), and metal impurities (MW) and establish their structural characteristics. DFT further establishes their formation energies and related localized bands within the forbidden band. Cryogenic excitonic studies on h-BN-encapsulated Janus monolayers offer a clear correlation between these structural defects and observed emission features, which closely align with the results of the theory. The overall results introduce the defect genome of Janus TMDs as an essential guideline for assessing their structural quality and device properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA