Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Rev ; 122(3): 3711-3762, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-34919381

RESUMO

To efficiently capture the energy of the nuclear bond, advanced nuclear reactor concepts seek solid fuels that must withstand unprecedented temperature and radiation extremes. In these advanced fuels, thermal energy transport under irradiation is directly related to reactor performance as well as reactor safety. The science of thermal transport in nuclear fuel is a grand challenge as a result of both computational and experimental complexities. Here we provide a comprehensive review of thermal transport research on two actinide oxides: one currently in use in commercial nuclear reactors, uranium dioxide (UO2), and one advanced fuel candidate material, thorium dioxide (ThO2). In both materials, heat is carried by lattice waves or phonons. Crystalline defects caused by fission events effectively scatter phonons and lead to a degradation in fuel performance over time. Bolstered by new computational and experimental tools, researchers are now developing the foundational work necessary to accurately model and ultimately control thermal transport in advanced nuclear fuels. We begin by reviewing research aimed at understanding thermal transport in perfect single crystals. The absence of defects enables studies that focus on the fundamental aspects of phonon transport. Next, we review research that targets defect generation and evolution. Here the focus is on ion irradiation studies used as surrogates for damage caused by fission products. We end this review with a discussion of modeling and experimental efforts directed at predicting and validating mesoscale thermal transport in the presence of irradiation defects. While efforts in these research areas have been robust, challenging work remains in developing holistic tools to capture and predict thermal energy transport across widely varying environmental conditions.

2.
Biofouling ; 37(2): 131-144, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33730945

RESUMO

Amphiphilic gels consisting of acrylamide (AAM)/2-hydroxyethyl methacrylate (HEMA), hexafluorobutyl methacrylate (HFBMA) and non-isocyanate urethane dimethacrylate (NIUDMA) of varying molecular weights were compared. A three-level Taguchi analysis was performed using the amount of AAM/HEMA, HFBMA, NIUDMA and reaction time as dependent variables to determine the optimal formulation of the gels with maximized toughness and elastic modulus. The results were compared with commercial AF/FR Intersleek® coatings (IS 700, IS 900 and IS 1100SR) for their antifouling performance against a marine microalga (Navicula incerta), a marine bacterium (Cellulophaga lytica) and adult barnacles (Amphibalanus amphitrite). The toughness, elastic modulus and strain at break of the optimized AAM gels ranged from 3 to7 MPa, 25 to 72 MPa and 80% to 170%, respectively, whereas those of the optimized HEMA gels ranged from 1 to 3 MPa, 13 to 23 MPa and 76% to 160%, respectively. The gels, particularly AHN(E9) and HHN(E12), showed reductions of attachment compared with IS700 of up to 93% and 58%, respectively.


Assuntos
Incrustação Biológica , Animais , Incrustação Biológica/prevenção & controle , Flavobacteriaceae , Géis , Isocianatos , Propriedades de Superfície
3.
J Open Res Softw ; 7(1)2019.
Artigo em Inglês | MEDLINE | ID: mdl-38486803

RESUMO

Scientific communities struggle with the challenge of effectively and efficiently sharing content and data. An online portal provides a valuable space for scientific communities to discuss challenges and collate scientific results. Examples of such portals include the Micromagnetic Modeling Group (µMAG [1]), the Interatomic Potentials Repository (IPR [2, 3]) and on a larger scale the NIH Genetic Sequence Database (GenBank [4]). In this work, we present a description of a generic web portal that leverages existing online services to provide a framework that may be adopted by other small scientific communities. The first deployment of the PFHub framework supports phase-field practitioners and code developers participating in an effort to improve quality assurance for phase-field codes.

4.
Phys Chem Chem Phys ; 15(44): 19438-49, 2013 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-24127018

RESUMO

Temperature accelerated dynamics and molecular dynamics simulations are used to investigate the strain effects on oxygen interstitial and vacancy migration in tetragonal zirconium dioxide. At zero external strain, the anisotropic migration mechanisms of oxygen defects are characterized. At non-zero strains, both the crystal structure and defect migration barriers are modified by strain. Under compressive strains, the defect migration barrier increases with the increasing strain for both interstitials and vacancies. The crystal structure transforms from a tetragonal to a nearly cubic fluorite structure. Accordingly, the defect migration becomes nearly isotropic. Under dilative strains, the migration barrier first decreases then increases with increasing strain for both types of defects. The tetragonal phase transforms to a lower symmetry structure that is close to the orthorhombic phase. In turn, the defect migration becomes highly anisotropic. Under both compressive and dilative strains, interstitials respond to strain more strongly than vacancies. At small dilative strains, an oxygen interstitial has comparable diffusivity to a vacancy, suggesting that both types of defects can contribute to oxygen transport, if they are present. Although currently no previous result is available to validate oxygen interstitial diffusion behavior, the trend of strain effects on oxygen vacancy diffusion is in good agreement with available experimental and theoretical studies in the literature.

5.
J Phys Condens Matter ; 24(30): 305005, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22722319

RESUMO

The nucleation behavior of He bubbles in single-crystal (sc) and nano-grain body-centered-cubic (bcc) Mo is simulated using molecular dynamics (MD) simulations, focusing on the effects of the grain boundary (GB) structure. In sc Mo, the nucleation behavior of He bubbles depends on irradiation conditions. He bubbles nucleate by either clustering of He atoms with pre-existing vacancies or self-interstitial-atom (SIA) punching without initial vacancies. In nano-grain Mo, strong precipitation of He at the GBs is observed, and the density, size and spatial distribution of He bubbles vary with the GB structure. The corresponding He bubble density is higher in nano-grain Mo than that in sc Mo and the average bubble size is smaller. In the GB plane, He bubbles distribute along the dislocation cores for GBs consisting of GB dislocations and randomly for those without distinguishable dislocation structures. The simulation results in nano-grain Mo are in agreement with previous experiments in metal nano-layers, and they are further explained by the effect of excess volume associated with the GBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...