Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 24(17): 4294-4303, 2018 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-29446499

RESUMO

Magnetic phase switching in a coordination polymer is reported, which is demonstrated by combining two processes: (A) the pre-organization of magnetic/redox-active molecules into a framework, and (B) a post-treatment through electrochemical tuning of the pre-organized molecules. A TTF.+ -TCNQ.- salt (TTF=tetrathiafulvalene; TCNQ=7,7,8,8-tetracyano-p-quinodimethane) was incorporated into a three-dimensional framework with paddlewheel-type dimetal(II, II) units ([M2II,II ]; M=Ru with S=1, 1; and Rh with S=0, 2), where the [M2II,II ] and TCNQ.- units form the coordinating framework, and TTF.+ is located in the pores of framework, forming an irregular π-stacking alternating column with the TCNQ.- in the framework. In 1, the spins of [Ru2II,II ] and TCNQ.- units make a magnetic correlation through the framework upon decreasing the temperature from 300 K, which is, however, suddenly suppressed below 137 K (=Td (1)) by the formation of a spin singlet in the TTF.+ -TCNQ.- columns, as seen in the spin-Peierls transition (Td (2)=200 K). This material was incorporated as a cathode in a Li-ion battery (LIB); a long-range ferrimagnetic correlation was formed through the three-dimensional [{Ru2II,II }2 TCNQ]- framework at Tc =78 K in the discharge process. The reversible magnetic phase switching between the non-volatile ferrimagnetic and paramagnetic states, resulting from the local spin tuning of quasi-spin-Peierls singlet, is demonstrated through the discharge/charge cycling of the LIB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA