Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Infect Dis ; 228(11): 1505-1515, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37224525

RESUMO

BACKGROUND: Herpes simplex virus 1 can cause severe infections in individuals who are immunocompromised. In these patients, emergence of drug resistance mutations causes difficulties in infection management. METHODS: Seventeen herpes simplex virus 1 isolates were obtained from orofacial/anogenital lesions in a patient with leaky severe combined immunodeficiency over 7 years, before and after stem cell transplantation. Spatial/temporal evolution of drug resistance was characterized genotypically-with Sanger and next-generation sequencing of viral thymidine kinase (TK) and DNA polymerase (DP)-and phenotypically. CRISPR/Cas9 was used to introduce the novel DP Q727R mutation, and dual infection-competition assays were performed to assess viral fitness. RESULTS: Isolates had identical genetic backgrounds, suggesting that orofacial/anogenital infections derived from the same virus lineage. Eleven isolates proved heterogeneous TK virus populations by next-generation sequencing, undetectable by Sanger sequencing. Thirteen isolates were acyclovir resistant due to TK mutations, and the Q727R isolate additionally exhibited foscarnet/adefovir resistance. Recombinant Q727R mutant virus showed multidrug resistance and increased fitness under antiviral pressure. CONCLUSIONS: Long-term follow-up of a patient with severe combined immunodeficiency revealed virus evolution and frequent reactivation of wild-type and TK mutant strains, mostly as heterogeneous populations. The DP Q727R resistance phenotype was confirmed with CRISPR/Cas9, a useful tool to validate novel drug resistance mutations.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Síndromes de Imunodeficiência , Imunodeficiência Combinada Severa , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Herpes Simples/tratamento farmacológico , Imunodeficiência Combinada Severa/tratamento farmacológico , Edição de Genes , Farmacorresistência Viral/genética , Aciclovir/farmacologia , Aciclovir/uso terapêutico , Mutação , DNA Polimerase Dirigida por DNA/genética , Resistência a Múltiplos Medicamentos , Timidina Quinase/genética , Timidina Quinase/uso terapêutico
2.
Drug Resist Updat ; 37: 1-16, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29548479

RESUMO

Herpesviruses thymidine kinase (TK) and protein kinase (PK) allow the activation of nucleoside analogues used in anti-herpesvirus treatments. Mutations emerging in these two genes often lead to emergence of drug-resistant strains responsible for life-threatening diseases in immunocompromised populations. In this review, we analyze the binding of different nucleoside analogues to the TK active site of the three α-herpesviruses [Herpes Simplex Virus 1 and 2 (HSV-1 and HSV-2) and Varicella-Zoster Virus (VZV)] and present the impact of known mutations on the structure of the viral TKs. Furthermore, models of ß-herpesviruses [Human cytomegalovirus (HCMV) and human herpesvirus-6 (HHV-6)] PKs allow to link amino acid changes with resistance to ganciclovir and/or maribavir, an investigational chemotherapeutic used in patients with multidrug-resistant HCMV. Finally, we set the basis for the understanding of drug-resistance in γ-herpesviruses [Epstein-Barr virus (EBV) and Kaposi's sarcoma associated herpesvirus (KSHV)] TK and PK through the use of animal surrogate models.


Assuntos
Antivirais/uso terapêutico , Farmacorresistência Viral/genética , Infecções por Herpesviridae/tratamento farmacológico , Herpesviridae/efeitos dos fármacos , Mutação , Proteínas Quinases/genética , Timidina Quinase/genética , Proteínas Virais/genética , Animais , Antivirais/química , Desenho de Fármacos , Herpesviridae/enzimologia , Herpesviridae/genética , Infecções por Herpesviridae/virologia , Humanos , Conformação Proteica , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Relação Estrutura-Atividade , Timidina Quinase/química , Timidina Quinase/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo
3.
Oncotarget ; 7(9): 10386-401, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26824416

RESUMO

Human papillomavirus (HPV) is responsible for cervical cancer, and its role in head and neck carcinoma has been reported. No drug is approved for the treatment of HPV-related diseases but cidofovir (CDV) exhibits selective antiproliferative activity. In this study, we analyzed the effects of CDV-resistance (CDVR) in two HPV(+) (SiHaCDV and HeLaCDV) and one HPV(-) (HaCaTCDV) tumor cell lines. Quantification of CDV metabolites and analysis of the sensitivity profile to chemotherapeutics was performed. Transporters expression related to multidrug-resistance (MRP2, P-gp, BCRP) was also investigated. Alterations of CDV metabolism in SiHaCDV and HeLaCDV, but not in HaCaTCDV, emerged via impairment of UMP/CMPK1 activity. Mutations (P64T and R134M) as well as down-regulation of UMP/CMPK1 expression were observed in SiHaCDV and HeLaCDV, respectively. Altered transporters expression in SiHaCDV and/or HeLaCDV, but not in HaCaTCDV, was also noted. Taken together, these results indicate that CDVR in HPV(+) tumor cells is a multifactorial process.


Assuntos
Citosina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/genética , Núcleosídeo-Fosfato Quinase/metabolismo , Organofosfonatos/farmacologia , Infecções por Papillomavirus/tratamento farmacológico , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/virologia , Transportadores de Cassetes de Ligação de ATP/biossíntese , Linhagem Celular Tumoral , Cidofovir , Citidina Trifosfato/biossíntese , Citosina/farmacologia , Feminino , Células HeLa , Humanos , Testes de Sensibilidade Microbiana , Núcleosídeo-Fosfato Quinase/biossíntese , Papillomaviridae , Fosforilação , Proteínas Carreadoras de Solutos/biossíntese , Uridina Trifosfato/biossíntese , Neoplasias do Colo do Útero/patologia
5.
J Antimicrob Chemother ; 70(5): 1367-80, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25630650

RESUMO

OBJECTIVES: ST-246 is one of the key antivirals being developed to fight orthopoxvirus (OPV) infections. Its exact mode of action is not completely understood, but it has been reported to interfere with the wrapping of infectious virions, for which F13L (peripheral membrane protein) and B5R (type I glycoprotein) are required. Here we monitored the appearance of ST-246 resistance to identify its molecular target. METHODS: Vaccinia virus (VACV), cowpox virus (CPXV) and camelpox virus (CMLV) with reduced susceptibility to ST-246 were selected in cell culture and further characterized by antiviral assays and immunofluorescence. A panel of recombinant OPVs was engineered and a putative 3D model of F13L coupled with molecular docking was used to visualize drug-target interaction. The F13L gene of 65 CPXVs was sequenced to investigate F13L amino acid heterogeneity. RESULTS: Amino acid substitutions or insertions were found in the F13L gene of six drug-resistant OPVs and production of four F13L-recombinant viruses confirmed their role(s) in the occurrence of ST-246 resistance. F13L, but not B5R, knockout OPVs showed resistance to ST-246. ST-246 treatment of WT OPVs delocalized F13L- and B5R-encoded proteins and blocked virus wrapping. Putative modelling of F13L and ST-246 revealed a probable pocket into which ST-246 penetrates. None of the identified amino acid changes occurred naturally among newly sequenced or NCBI-derived OPV F13L sequences. CONCLUSIONS: Besides demonstrating that F13L is a direct target of ST-246, we also identified novel F13L residues involved in the interaction with ST-246. These findings are important for ST-246 use in the clinic and crucial for future drug-resistance surveillance programmes.


Assuntos
Antivirais/metabolismo , Benzamidas/metabolismo , Vírus da Varíola Bovina/fisiologia , Isoindóis/metabolismo , Orthopoxvirus/fisiologia , Fosfolipases/antagonistas & inibidores , Vaccinia virus/fisiologia , Montagem de Vírus/efeitos dos fármacos , Animais , Vírus da Varíola Bovina/efeitos dos fármacos , Vírus da Varíola Bovina/enzimologia , Vírus da Varíola Bovina/genética , Farmacorresistência Viral , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Simulação de Acoplamento Molecular , Mutação , Orthopoxvirus/efeitos dos fármacos , Orthopoxvirus/enzimologia , Orthopoxvirus/genética , Fosfolipases/química , Fosfolipases/genética , Ligação Proteica , Conformação Proteica , Inoculações Seriadas , Vaccinia virus/efeitos dos fármacos , Vaccinia virus/enzimologia , Vaccinia virus/genética , Ensaio de Placa Viral , Cultura de Vírus
6.
Antimicrob Agents Chemother ; 58(12): 7312-23, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25267682

RESUMO

The susceptibilities of gammaherpesviruses, including Epstein-Barr virus (EBV), Kaposi's sarcoma-associated herpesvirus (KSHV), and animal rhadinoviruses, to various nucleoside analogs was investigated in this work. Besides examining the antiviral activities and modes of action of antivirals currently marketed for the treatment of alpha- and/or betaherpesvirus infections (including acyclovir, ganciclovir, penciclovir, foscarnet, and brivudin), we also investigated the structure-activity relationship of various 5-substituted uridine and cytidine molecules. The antiviral efficacy of nucleoside derivatives bearing substitutions at the 5 position was decreased if the bromovinyl was replaced by chlorovinyl. 1-ß-D-Arabinofuranosyl-(E)-5-(2-bromovinyl)uracil (BVaraU), a nucleoside with an arabinose configuration of the sugar ring, exhibited no inhibitory effect against rhadinoviruses but was active against EBV. On the other hand, the fluoroarabinose cytidine analog 2'-fluoro-5-iodo-aracytosine (FIAC) showed high selectivity indices against gammaherpesviruses that were comparable to those of brivudin. Additionally, we selected brivudin- and acyclovir-resistant rhadinoviruses in vitro and characterized them by phenotypic and genotypic (i.e., sequencing of the viral thymidine kinase, protein kinase, and DNA polymerase) analysis. Here, we reveal key amino acids in these enzymes that play an important role in substrate recognition. Our data on drug susceptibility profiles of the different animal gammaherpesvirus mutants highlighted cross-resistance patterns and indicated that pyrimidine nucleoside derivatives are phosphorylated by the viral thymidine kinase and purine nucleosides are preferentially activated by the gammaherpesvirus protein kinase.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral/genética , Herpesvirus Humano 4/efeitos dos fármacos , Herpesvirus Humano 8/efeitos dos fármacos , Rhadinovirus/efeitos dos fármacos , Proteínas Virais/química , Aciclovir/análogos & derivados , Aciclovir/química , Aciclovir/farmacologia , Sequência de Aminoácidos , Animais , Antivirais/química , Arabinofuranosiluracila/análogos & derivados , Arabinofuranosiluracila/química , Arabinofuranosiluracila/farmacologia , Bromodesoxiuridina/análogos & derivados , Bromodesoxiuridina/química , Bromodesoxiuridina/farmacologia , Citarabina/análogos & derivados , Citarabina/química , Citarabina/farmacologia , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Foscarnet/química , Foscarnet/farmacologia , Ganciclovir/química , Ganciclovir/farmacologia , Guanina , Herpesvirus Humano 4/enzimologia , Herpesvirus Humano 4/genética , Herpesvirus Humano 8/enzimologia , Herpesvirus Humano 8/genética , Humanos , Dados de Sequência Molecular , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Rhadinovirus/enzimologia , Rhadinovirus/genética , Alinhamento de Sequência , Relação Estrutura-Atividade , Timidina Quinase/química , Timidina Quinase/genética , Timidina Quinase/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
7.
Antimicrob Agents Chemother ; 58(1): 27-37, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24126587

RESUMO

The availability of adequate treatments for poxvirus infections would be valuable not only for human use but also for veterinary use. In the search for novel antiviral agents, a 1'-methyl-substituted 4'-thiothymidine nucleoside, designated KAY-2-41, emerged as an efficient inhibitor of poxviruses. In vitro, KAY-2-41 was active in the micromolar range against orthopoxviruses (OPVs) and against the parapoxvirus orf. The compound preserved its antiviral potency against OPVs resistant to the reference molecule cidofovir. KAY-2-41 had no noticeable toxicity on confluent monolayers, but a cytostatic effect was seen on growing cells. Genotyping of vaccinia virus (VACV), cowpox virus, and camelpox virus selected for resistance to KAY-2-41 revealed a nucleotide deletion(s) close to the ATP binding site or a nucleotide substitution close to the substrate binding site in the viral thymidine kinase (TK; J2R) gene. These mutations resulted in low levels of resistance to KAY-2-41 ranging from 2.7- to 6.0-fold and cross-resistance to 5-bromo-2'-deoxyuridine (5-BrdU) but not to cidofovir. The antiviral effect of KAY-2-41 relied, at least in part, on activation (phosphorylation) by the viral TK, as shown through enzymatic assays. The compound protected animals from disease and mortality after a lethal challenge with VACV, reduced viral loads in the serum, and abolished virus replication in tissues. In conclusion, KAY-2-41 is a promising nucleoside analogue for the treatment of poxvirus-induced diseases. Our findings warrant the evaluation of additional 1'-carbon-substituted 4'-thiothymidine derivatives as broad-spectrum antiviral agents, since this molecule also showed antiviral potency against herpes simplex virus 1 in earlier studies.


Assuntos
Antivirais/farmacologia , Orthopoxvirus/efeitos dos fármacos , Tiofenos/farmacologia , Timidina/análogos & derivados , Antivirais/química , Vírus da Varíola Bovina/efeitos dos fármacos , Vírus da Varíola Bovina/genética , Genótipo , Estrutura Molecular , Orthopoxvirus/genética , Tiofenos/química , Timidina/química , Timidina/farmacologia , Vaccinia virus/efeitos dos fármacos , Vaccinia virus/genética
8.
Mol Cancer ; 12: 158, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24325392

RESUMO

BACKGROUND: Insights into the mechanisms associated with chemotherapy-resistance are important for implementation of therapeutic strategies and for unraveling the mode of action of chemotherapeutics. Although cidofovir (CDV) has proven efficacious in the treatment of human papillomavirus (HPV)-induced proliferation, no studies concerning the development of resistance to CDV in HPV-positive tumor cells have been performed yet. METHODS: From the cervical carcinoma SiHa cells (SiHaparental), which are HPV-16 positive, cidofovir-resistant cells (SiHaCDV) were selected, and differential gene expression profiles were analyzed by means of microarrays. We examined in vitro phenotyping of resistant cells compared to parental cells as well as tumorigenicity and pathogenicity in a mouse-xenograft model. RESULTS: SiHaCDV had a resistant phenotype and a reduced growth both in vitro and in vivo. A markedly diminished inflammatory response (as measured by production of host- and tumor-derived cytokines and number of neutrophils and macrophages in spleen) was induced by SiHaCDV than by SiHaparental in the xenograft model. Gene expression profiling identified several genes with differential expression upon acquisition of CDV-resistance and pointed to a diminished induction of inflammatory response in SiHaCDV compared to SiHaparental. CONCLUSIONS: Our results indicate that acquisition of resistance to cidofovir in SiHa cells is linked to reduced pathogenicity. The present study contributes to our understanding on the antiproliferative effects of CDV and on the mechanisms involved, the inflammatory response playing a central role.


Assuntos
Antineoplásicos/farmacologia , Citosina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos , Organofosfonatos/farmacologia , Neoplasias do Colo do Útero/patologia , Animais , Antivirais/farmacologia , Apoptose , Linhagem Celular Tumoral , Cidofovir , Citosina/farmacologia , Modelos Animais de Doenças , Farmacorresistência Viral , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação , Camundongos , Camundongos Nus , Fenótipo , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
BMC Med Genomics ; 6: 18, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23702334

RESUMO

BACKGROUND: Cidofovir (CDV) proved efficacious in treatment of human papillomaviruses (HPVs) hyperplasias. Antiproliferative effects of CDV have been associated with apoptosis induction, S-phase accumulation, and increased levels of tumor suppressor proteins. However, the molecular mechanisms for the selectivity and antitumor activity of CDV against HPV-transformed cells remain unexplained. METHODS: We evaluated CDV drug metabolism and incorporation into cellular DNA, in addition to whole genome gene expression profiling by means of microarrays in two HPV(+) cervical carcinoma cells, HPV- immortalized keratinocytes, and normal keratinocytes. RESULTS: Determination of the metabolism and drug incorporation of CDV into genomic DNA demonstrated a higher rate of drug incorporation in HPV(+) tumor cells and immortalized keratinocytes compared to normal keratinocytes. Gene expression profiling clearly showed distinct and specific drug effects in the cell types investigated. Although an effect on inflammatory response was seen in all cell types, different pathways were identified in normal keratinocytes compared to immortalized keratinocytes and HPV(+) tumor cells. Notably, Rho GTPase pathways, LXR/RXR pathways, and acute phase response signaling were exclusively activated in immortalized cells. CDV exposed normal keratinocytes displayed activated cell cycle regulation upon DNA damage signaling to allow DNA repair via homologous recombination, resulting in genomic stability and survival. Although CDV induced cell cycle arrest in HPV- immortalized cells, DNA repair was not activated in these cells. In contrast, HPV(+) cells lacked cell cycle regulation, leading to genomic instability and eventually apoptosis. CONCLUSIONS: Taken together, our data provide novel insights into the mechanism of action of CDV and its selectivity for HPV-transformed cells. The proposed mechanism suggests that this selectivity is based on the inability of HPV(+) cells to respond to DNA damage, rather than on a direct anti-HPV effect. Since cell cycle control is deregulated by the viral oncoproteins E6 and E7 in HPV(+) cells, these cells are more susceptible to DNA damage than normal keratinocytes. Our findings underline the therapeutic potential of CDV for HPV-associated malignancies as well as other neoplasias.


Assuntos
Antivirais/toxicidade , Citosina/análogos & derivados , Dano ao DNA/efeitos dos fármacos , Organofosfonatos/toxicidade , Apoptose , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Cidofovir , Biologia Computacional , Citosina/toxicidade , Reparo do DNA , Regulação para Baixo/efeitos dos fármacos , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Células HeLa , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Papillomaviridae/efeitos dos fármacos , Papillomaviridae/metabolismo , Receptores X de Retinoides/metabolismo , Transdução de Sinais , Regulação para Cima/efeitos dos fármacos , Proteínas rho de Ligação ao GTP/metabolismo
10.
J Infect Dis ; 207(8): 1295-305, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23315323

RESUMO

BACKGROUND: Infections caused by acyclovir-resistant isolates of herpes simplex virus (HSV) after hematopoietic stem cell transplantation (HSCT) are an emerging concern. An understanding of the evolutionary aspects of HSV infection is crucial to the design of effective therapeutic and control strategies. METHODS: Eight sequential HSV-1 isolates were recovered from an HSCT patient who suffered from recurrent herpetic gingivostomatitis and was treated alternatively with acyclovir, ganciclovir, and foscavir. The diverse spectra and temporal changes of HSV drug resistance were determined phenotypically (drug-resistance profiling) and genotypically (sequencing of the viral thymidine kinase and DNA polymerase genes). RESULTS: Analysis of 60 clones recovered from the different isolates demonstrated that most of these isolates were heterogeneous mixtures of variants, indicating the simultaneous infection with different drug-resistant viruses. The phenotype/genotype of several clones associated with resistance to acyclovir and/or foscavir were identified. Two novel mutations (E798K and I922T) in the viral DNA polymerase could be linked to drug resistance. CONCLUSIONS: The heterogeneity within the viral populations and the temporal changes of drug-resistant viruses found in this HSCT recipient were remarkable, showing a rapid evolution of HSV-1. Drug-resistance surveillance is highly recommended among immunocompromised patients to manage the clinical syndrome and to avoid the emergence of multidrug-resistant isolates.


Assuntos
Evolução Molecular , Genes pol , Heterogeneidade Genética , Herpesvirus Humano 1/enzimologia , Estomatite Herpética/tratamento farmacológico , Timidina Quinase/genética , Aciclovir/farmacologia , Adulto , DNA Viral/análise , DNA Viral/genética , Farmacorresistência Viral Múltipla , Feminino , Ganciclovir/farmacologia , Genótipo , Transplante de Células-Tronco Hematopoéticas , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/isolamento & purificação , Humanos , Leucemia Mieloide Aguda/patologia , Mutação , Fenótipo , Estomatite Herpética/patologia , Estomatite Herpética/virologia
11.
Cancer Lett ; 329(2): 137-45, 2013 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-23142293

RESUMO

Cidofovir has shown antiproliferative effects against human papillomavirus (HPV)-positive cells and successfully suppressed the growth of HPV-positive xenografts in athymic nude mice. The present study evaluated the effect of cidofovir on several disease parameters in this animal model. Intratumoral administration of cidofovir resulted in a beneficial effect on body weight gain, a reduction in splenomegaly, a partial restoration of tryptophan catabolism, and diminished the inflammatory state induced by the xenografts. Administration of cidofovir to tumor-free animals did not have a direct effect on these parameters. Beyond suppressing tumor growth, intratumoral treatment with cidofovir ameliorated the pathology associated with HPV-tumor growth.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma/tratamento farmacológico , Citosina/análogos & derivados , Papillomavirus Humano 16 , Organofosfonatos/uso terapêutico , Infecções por Papillomavirus/tratamento farmacológico , Neoplasias do Colo do Útero/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Encéfalo/metabolismo , Caquexia/tratamento farmacológico , Caquexia/etiologia , Carcinoma/complicações , Carcinoma/patologia , Carcinoma/virologia , Linhagem Celular Tumoral , Cidofovir , Citocinas/sangue , Citosina/farmacologia , Citosina/uso terapêutico , Feminino , Humanos , Cinurenina/sangue , Contagem de Leucócitos , Fígado/efeitos dos fármacos , Fígado/patologia , Camundongos , Camundongos Nus , Organofosfonatos/farmacologia , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia , Baço/efeitos dos fármacos , Baço/patologia , Esplenomegalia/tratamento farmacológico , Esplenomegalia/etiologia , Triptofano/sangue , Carga Tumoral/efeitos dos fármacos , Neoplasias do Colo do Útero/complicações , Neoplasias do Colo do Útero/patologia , Neoplasias do Colo do Útero/virologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Virol ; 86(13): 7310-25, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22532673

RESUMO

Cidofovir or (S)-HPMPC is one of the three antiviral drugs that might be used for the treatment of orthopoxvirus infections. (S)-HPMPC and its 2,6-diaminopurine counterpart, (S)-HPMPDAP, have been described to select, in vitro, for drug resistance mutations in the viral DNA polymerase (E9L) gene of vaccinia virus (VACV). Here, to extend our knowledge of drug resistance development among orthopoxviruses, we selected, in vitro, camelpox viruses (CMLV) resistant to (S)-HPMPDAP and identified a single amino acid change, T831I, and a double mutation, A314V+A684V, within E9L. The production of recombinant CMLV and VACV carrying these amino acid substitutions (T831I, A314V, or A314V+A684V) demonstrated clearly their involvement in conferring reduced sensitivity to viral DNA polymerase inhibitors, including (S)-HPMPDAP. Both CMLV and VACV harboring the A314V change showed comparable drug-susceptibility profiles to various antivirals and similar impairments in viral growth. In contrast, the single change T831I and the double change A314V+A684V in VACV were responsible for increased levels of drug resistance and for cross-resistance to viral DNA polymerase antivirals that were not observed with their CMLV counterparts. Each amino acid change accounted for an attenuated phenotype of VACV in vivo. Modeling of E9L suggested that the T→I change at position 831 might abolish hydrogen bonds between E9L and the DNA backbone and have a direct impact on the incorporation of the acyclic nucleoside phosphonates. Our findings demonstrate that drug-resistance development in two related orthopoxvirus species may impact drug-susceptibility profiles and viral fitness differently.


Assuntos
Antivirais/farmacologia , DNA Polimerase Dirigida por DNA/genética , Farmacorresistência Viral , Mutação de Sentido Incorreto , Orthopoxvirus/efeitos dos fármacos , Vaccinia virus/efeitos dos fármacos , Substituição de Aminoácidos , Animais , Linhagem Celular , Cidofovir , Citosina/análogos & derivados , Citosina/farmacologia , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Organofosfonatos/farmacologia , Orthopoxvirus/enzimologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Seleção Genética , Vaccinia virus/enzimologia , Ensaio de Placa Viral
13.
J Med Chem ; 54(1): 222-32, 2011 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-21128666

RESUMO

Acyclic nucleoside phosphonates (ANPs) are at the cornerstone of DNA virus and retrovirus therapies. They reach their target, the viral DNA polymerase, after two phosphorylation steps catalyzed by cellular kinases. New pyrimidine ANPs have been synthesized with unsaturated acyclic side chains (prop-2-enyl-, but-2-enyl-, pent-2-enyl-) and different substituents at the C5 position of the uracil nucleobase. Several derivatives in the but-2-enyl- series 9d and 9e, with (E) but not with (Z) configuration, were efficient substrates for human thymidine monophosphate (TMP) kinase, but not for uridine monophosphate-cytosine monophosphate (UMP-CMP) kinase, which is in contrast to cidofovir. Human TMP kinase was successfully crystallized in a complex with phosphorylated (E)-thymidine-but-2-enyl phosphonate 9e and ADP. The bis-pivaloyloxymethyl (POM) esters of (E)-9d and (E)-9e were synthesized and shown to exert activity against herpes virus in vitro (IC(50) = 3 µM) and against varicella zoster virus in vitro (IC(50) = 0.19 µM), in contrast to the corresponding inactive (Z) derivatives. Thus, their antiviral activity correlates with their ability to act as thymidylate kinase substrates.


Assuntos
Antivirais/síntese química , Núcleosídeo-Fosfato Quinase/metabolismo , Organofosfonatos/síntese química , Pró-Fármacos/síntese química , Nucleosídeos de Pirimidina/síntese química , Timidina/análogos & derivados , Antivirais/química , Antivirais/farmacologia , Domínio Catalítico , Células Cultivadas , Cristalografia por Raios X , Herpesviridae/efeitos dos fármacos , Humanos , Ligantes , Modelos Moleculares , Estrutura Molecular , Núcleosídeo-Fosfato Quinase/antagonistas & inibidores , Organofosfonatos/química , Organofosfonatos/farmacologia , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Nucleosídeos de Pirimidina/química , Nucleosídeos de Pirimidina/farmacologia , Estereoisomerismo , Relação Estrutura-Atividade , Especificidade por Substrato , Timidina/síntese química , Timidina/química , Timidina/farmacologia , Timidina Quinase/antagonistas & inibidores
14.
Artigo em Inglês | MEDLINE | ID: mdl-19749250

RESUMO

Several human pathogens possess nucleoside or nucleotide kinases with large substrate specificity compared to their human counterparts. This phenomenon has been successfully exploited for the specific targeting of prodrugs such as Acyclovir against herpes virus. Combined structural and biochemical studies of these enzymes can thus provide essential information for the rational design of specific antimicrobial agents. Here we studied the structural basis for the specificity of a thymidylate kinase from the poxvirus family. Poxvirus thymidylate kinase has unusual substrate specificity and can accept bulky analogues such as 5-bromo-vinyl-dUMP (BVdUMP). The 2 A crystal structure of the thymidylate kinase bound to this compound now gives the structural basis for its specific molecular recognition.


Assuntos
Nucleotídeos de Desoxiuracil/química , Núcleosídeo-Fosfato Quinase/química , Vaccinia virus/enzimologia , Nucleotídeos de Desoxiuracil/metabolismo , Modelos Moleculares , Núcleosídeo-Fosfato Quinase/metabolismo , Especificidade por Substrato
15.
Biochem Biophys Res Commun ; 388(1): 6-11, 2009 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-19631609

RESUMO

Vaccinia virus thymidylate kinase, although similar in sequence to human TMP kinase, has broader substrate specificity and phosphorylates (E)-5-(2-bromovinyl)-dUMP and dGMP. Modified guanines such as glyoxal-dG, 8-oxo-dG, O(6)-methyl-dG, N(2)-ethyl-dG and N(7)-methyl-dG were found present in cancer cell DNA. Alkylated and oxidized dGMP analogs were examined as potential substrates for vaccinia TMP kinase and also for human TMP and GMP kinases. Molecular models obtained from structure-based docking rationalized the enzymatic data. All tested nucleotides are found surprisingly substrates of vaccinia TMP kinase and also of human GMP kinase. Interestingly, O(6)-methyl-dGMP is the only analog specific for the vaccinia enzyme. Thus, O(6)-Me-dGMP could be useful for designing new compounds of medical interest either in antipoxvirus therapy or in experimental combined gene/chemotherapy of cancer. These results also provide new insights regarding dGMP analog reaction with human GMP kinase and their slow recycling by salvage pathway nucleotide kinases.


Assuntos
Nucleotídeos de Desoxiguanina/metabolismo , Guanilato Quinases/metabolismo , Núcleosídeo-Fosfato Quinase/metabolismo , Vaccinia virus/enzimologia , Antivirais/química , Desenho de Fármacos , Humanos , Fosforilação , Especificidade por Substrato
16.
Proc Natl Acad Sci U S A ; 105(44): 16900-5, 2008 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-18971333

RESUMO

Unlike most DNA viruses, poxviruses replicate in the cytoplasm of host cells. They encode enzymes needed for genome replication and transcription, including their own thymidine and thymidylate kinases. Some herpes viruses encode only 1 enzyme catalyzing both reactions, a peculiarity used for prodrug activation to obtain maximum specificity. We have solved the crystal structures of vaccinia virus thymidylate kinase bound to TDP or brivudin monophosphate. Although the viral and human enzymes have similar sequences (42% identity), they differ in their homodimeric association and active-site geometry. The vaccinia TMP kinase dimer arrangement is orthogonal and not antiparallel as in human enzyme. This different monomer orientation is related to the presence of a canal connecting the edge of the dimer interface to the TMP base binding pocket. Consequently, the pox enzyme accommodates nucleotides with bulkier bases, like brivudin monophosphate and dGMP; these are efficiently phosphorylated and stabilize the enzyme. The brivudin monophosphate-bound structure explains the structural basis for this specificity, opening the way to the rational development of specific antipox agents that may also be suitable for poxvirus TMP kinase gene-based chemotherapy of cancer.


Assuntos
Antivirais/química , Núcleosídeo-Fosfato Quinase/química , Vaccinia virus/enzimologia , Sequência de Aminoácidos , Bromodesoxiuridina/análogos & derivados , Bromodesoxiuridina/química , Varredura Diferencial de Calorimetria , Domínio Catalítico , Cristalografia por Raios X , Dimerização , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Núcleosídeo-Fosfato Quinase/metabolismo , Estrutura Quaternária de Proteína , Especificidade por Substrato
17.
Protein Sci ; 17(9): 1486-93, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18523102

RESUMO

Bacillus anthracis is well known in connection with biological warfare. The search for new drug targets and antibiotics is highly motivated because of upcoming multiresistant strains. Thymidylate kinase is an ideal target since this enzyme is at the junction of the de novo and salvage synthesis of dTTP, an essential precursor for DNA synthesis. Here the expression and characterization of thymidylate kinase from B. anthracis (Ba-TMPK) is presented. The enzyme phosphorylated deoxythymidine-5'-monophosphate (dTMP) efficiently with K (m) and V (max) values of 33 microM and 48 micromol mg(-1) min(-1), respectively. The efficiency of deoxyuridine-5'-monophosphate phosphorylation was approximately 10% of that of dTMP. Several dTMP analogs were tested, and D-FMAUMP (2'-fluoroarabinosyl-5-methyldeoxyuridine-5'-monophosphate) was selectively phosphorylated with an efficiency of 172% of that of D-dTMP, but L-FMAUMP was a poor substrate as were 5-fluorodeoxyuridine-5'-monophosphate (5FdUMP) and 2',3'-dideoxy-2',3'-didehydrothymidine-5'-monophosphate (d4TMP). No activity could be detected with 3'-azidothymidine-5'-monophosphate (AZTMP). The corresponding nucleosides known as efficient anticancer and antiviral compounds were also tested, and d-FMAU was a strong inhibitor with an IC(50) value of 10 microM, while other nucleosides--L-FMAU, dThd, 5-FdUrd, d4T, and AZT, and 2'-arabinosylthymidine--were poor inhibitors. A structure model was built for Ba-TMPK based on the Staphylococcus aureus TMPK structure. Docking with various substrates suggested mechanisms explaining the differences in substrate selectivity of the human and the bacterial TMPKs. These results may serve as a start point for development of new antibacterial agents.


Assuntos
Bacillus anthracis/enzimologia , Timidina Quinase/metabolismo , Trifosfato de Adenosina/metabolismo , Antineoplásicos/farmacologia , Antivirais/farmacologia , Catálise , Biologia Computacional , Nucleotídeos de Desoxiadenina/metabolismo , Dimerização , Relação Dose-Resposta a Droga , Desenho de Fármacos , Histidina/metabolismo , Humanos , Concentração Inibidora 50 , Cinética , Modelos Moleculares , Peso Molecular , Fosforilação , Conformação Proteica , Nucleosídeos de Pirimidina/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Especificidade por Substrato , Timidina Quinase/química , Timidina Quinase/genética , Timidina Monofosfato/análogos & derivados , Timidina Monofosfato/antagonistas & inibidores , Timidina Monofosfato/metabolismo
18.
Nucleosides Nucleotides Nucleic Acids ; 26(10-12): 1369-73, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18066785

RESUMO

Human UMP-CMP kinase is involved in the phosphorylation of nucleic acid precursors and also in the activation of antiviral analogues including cidofovir, an acyclic phosphonate compound that mimicks dCMP and shows a broad antiviral spectrum. The binding of ligands to the enzyme was here investigated using a fluorescent probe and a competitive titration assay. At the acceptor site, the enzyme was found to accommodate any base, purine and pyrimidine, including thymidine. A method for screening analogues based on their affinity for the UMP binding site was developed. The affinities of uracil vinylphosphonate derivatives modified in the 5 position were found similar to (d)UMP and (d)CMP and improved when compared to cidofovir.


Assuntos
Núcleosídeo-Fosfato Quinase/química , Nucleotídeos de Pirimidina/química , Nucleotídeos de Pirimidina/isolamento & purificação , Difosfato de Adenosina/análogos & derivados , Difosfato de Adenosina/química , Sítios de Ligação , Corantes Fluorescentes/química , Humanos , Organofosfonatos/química , Fosforilação , Compostos de Vinila/química
19.
Nucleosides Nucleotides Nucleic Acids ; 26(10-12): 1391-4, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18066789

RESUMO

Hitherto unknown 1,4-disubstituted-[1,2,3]-triazolo-4',4'-dihydroxymethyl-3'-deoxy carbanucleosides were synthesized based on a "click approach." Various alkynes were introduced on a key azido intermediate by the "click" 1,3-dipolar Huisgen cycloaddition. Their antiviral activities and cellular toxicities were evaluated on vaccinia virus. None of the synthesized compounds exhibited a significant antiviral activity.


Assuntos
Alcinos/química , Antivirais/síntese química , Azidas/química , Nucleosídeos/síntese química , Triazóis/síntese química , Ciclização , Micro-Ondas , Estrutura Molecular
20.
Nucleosides Nucleotides Nucleic Acids ; 26(10-12): 1399-402, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18066791

RESUMO

With the commercial availability of well-defined ruthenium metathesis catalysts which combine high stability and broad functional group compatibility, olefin metathesis is now routinely integrated in various syntheses. We will report here the overwhelming power and scope of cross-metathesis in the area of new acyclic nucleoside phosphonates. Scope and limitations of this approach, and especially the E/Z stereocontrol, are discussed on selected examples from our drug discovery group.


Assuntos
Antivirais/síntese química , Nucleosídeos/síntese química , Organofosfonatos/síntese química , Rutênio/química , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...