Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Mater Res B Appl Biomater ; 104(1): 126-32, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25677203

RESUMO

Blood serum fractions are hotly debated adjuvants in bone replacement therapies. In the present experiment, we coated demineralized bone matrices (DBM) with serum albumin and investigated stem cell attachment in vitro and bone formation in a rat calvaria defect model. In the in vitro experiments, we observed that significantly more cells adhere to the serum albumin coated DBMs at every time point. In vivo bone formation with albumin coated and uncoated DBM was monitored biweekly by computed tomography until 11 weeks postoperatively while empty defects served as controls. By the seventh week, the bone defect in the albumin group was almost completely closed (remaining defect 3.0 ± 2.3%), while uncoated DBM and unfilled control groups still had significant defects (uncoated: 40.2 ± 9.1%, control: 52.4 ± 8.9%). Higher density values were also observed in the albumin coated DBM group. In addition, the serum albumin enhanced group showed significantly higher volume of newly formed bone in the microCT analysis and produced significantly higher breaking force and stiffness compared to the uncoated grafts (peak breaking force: uncoated: 15.7 ± 4 N, albumin 46.1 ± 11 N). In conclusion, this investigation shows that implanting serum albumin coated DBM significantly reduces healing period in nonhealing defects and results in mechanically stronger bone. These results also support the idea that serum albumin coating provides a convenient milieu for stem cell function, and a much improved bone grafting success can be achieved without the use of exogenous stem cells.


Assuntos
Materiais Revestidos Biocompatíveis , Matriz Extracelular/química , Osteogênese/efeitos dos fármacos , Crânio/lesões , Células-Tronco/metabolismo , Animais , Técnica de Desmineralização Óssea , Adesão Celular , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Masculino , Ratos , Ratos Wistar , Albumina Sérica , Crânio/metabolismo , Crânio/patologia
2.
J Biomed Mater Res B Appl Biomater ; 104(7): 1336-42, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26138348

RESUMO

The key drawback of using demineralized bone matrix (DBM) is its low initial mechanical stability due to the severe depletion of mineral content. In the present study, we investigated the long-term regeneration of DBM in a critical size bone defect model and investigated the remineralization after 6 months. Bone defects were created in the cranium of male Wistar rats which were filled with DBM or left empty as negative control. In vivo bone formation was monitored with computed tomography after 11, 19, and 26 weeks postoperatively. After 6 months, parietal bones were subjected to micro-CT. Mineral content was determined with spectrophotometric analysis. After 11 weeks the DBM-filled bone defects were completely closed, while empty defects were still open. Density of the DBM-treated group increased significantly while the controls remained unchanged. Quantitative analysis by micro-CT confirmed the in vivo results, bone volume/tissue volume was significantly lower in the controls than in the DBM group. The demineralization procedure depleted the key minerals of the bone to a very low level. Six months after implantation Ca, P, Na, Mg, Zn, and Cr contents were completely restored to the normal level, while K, Sr, and Mn were only partially restored. The remineralization process of DBM is largely complete by the 6th month after implantation in terms of bone density, structure, and key mineral levels. Although DBM does not provide sufficient sources for any of these minerals, it induces a faster and more complete regeneration process. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1336-1342, 2016.


Assuntos
Calcificação Fisiológica , Matriz Extracelular/transplante , Osteogênese , Crânio , Microtomografia por Raio-X , Animais , Seguimentos , Masculino , Ratos , Ratos Wistar , Crânio/diagnóstico por imagem , Crânio/lesões , Crânio/metabolismo , Crânio/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...