Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Pharmacology ; 109(4): 216-230, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38569476

RESUMO

INTRODUCTION: Acute myeloid leukemia (AML) is a cancer of the hematopoietic system characterized by hyperproliferation of undifferentiated cells of the myeloid lineage. While most of AML therapies are focused toward tumor debulking, all-trans retinoic acid (ATRA) induces neutrophil differentiation in the AML subtype acute promyelocytic leukemia (APL). Macroautophagy has been extensively investigated in the context of various cancers and is often dysregulated in AML where it can have context-dependent pro- or anti-leukemogenic effects. On the contrary, the implications of chaperone-mediated autophagy (CMA) on the pathophysiology of diseases are still being explored and its role in AML remains elusive. METHODS: We took advantage of human AML primary samples and databases to analyze CMA gene expression and activity. Furthermore, we used ATRA-sensitive (NB4) and -resistant (NB4-R1) APL cells to further dissect a potential function for CMA in ATRA-mediated neutrophil differentiation. NB4-R1 cells are unique in that they do respond to retinoic acid transcriptionally but do not mature in response to retinoid signaling alone unless maturation is triggered by adding cyclic adenosine monophosphate. RESULTS: Here, we report that CMA-related mRNA transcripts are significantly higher expressed in immature hematopoietic cells as compared to neutrophils, contrasting the macroautophagy gene expression patterns. Accordingly, lysosomal degradation of an mCherry-KFERQ CMA reporter decreases during ATRA-induced differentiation of APL cells. On the other hand, using NB4-R1 cells we found that macroautophagy flux primed ATRA-resistant NB4-R1 cells to differentiate upon ATRA treatment but reduced the association of lysosome-associated membrane protein type 2A (LAMP-2A) and heat shock protein family A (Hsp70) member 8 (HSPA8), necessary for complete neutrophil maturation. Accordingly, depletion of HSPA8 attenuated CMA activity and facilitated APL cell differentiation. In contrast, maintaining high CMA activity by ectopic expression of LAMP-2A impeded APL differentiation. CONCLUSION: Overall, our findings suggest that APL neutrophil differentiation requires CMA inactivation and that this pathway predominantly depends on HSPA8 and is possibly assisted by other co-chaperones.


Assuntos
Diferenciação Celular , Autofagia Mediada por Chaperonas , Proteínas de Choque Térmico HSC70 , Leucemia Promielocítica Aguda , Tretinoína , Humanos , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patologia , Leucemia Promielocítica Aguda/tratamento farmacológico , Diferenciação Celular/efeitos dos fármacos , Tretinoína/farmacologia , Autofagia Mediada por Chaperonas/efeitos dos fármacos , Linhagem Celular Tumoral , Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSC70/genética , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Antineoplásicos/farmacologia
2.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38559213

RESUMO

The HIV-1 capsid is an irregularly shaped complex of about 1200 protein chains containing the viral genome and several viral proteins. Together, these components are the key to unlocking passage into the nucleus, allowing for permanent integration of the viral genome into the host cell genome. Recent interest into the role of the capsid in viral replication has been driven by the approval of the first-in-class drug lenacapavir, which marks the first drug approved to target a non-enzymatic HIV-1 viral protein. In addition to lenacapavir, other small molecules such as the drug-like compound PF74, and the anionic sugar inositolhexakisphosphate (IP6), are known to impact capsid stability, and although this is widely accepted as a therapeutic effect, the mechanisms through which they do so remain unknown. In this study, we employed a systematic atomistic simulation approach to study the impact of molecules bound to hexamers at the central pore (IP6) and the FG-binding site (PF74) on capsid oligomer dynamics, compared to apo hexamers and pentamers. We found that neither small molecule had a sizeable impact on the free energy of binding of the interface between neighboring hexamers but that both had impacts on the free energy profiles of performing angular deformations to the pair of oligomers akin to the variations in curvature along the irregular surface of the capsid. The IP6 cofactor, on one hand, stabilizes a pair of neighboring hexamers in their flattest configurations, whereas without IP6, the hexamers prefer a high tilt angle between them. On the other hand, having PF74 bound introduces a strong preference for intermediate tilt angles. These results suggest that structural instability is a natural feature of the HIV-1 capsid which is modulated by molecules bound in either the central pore or the FG-binding site. Such modulators, despite sharing many of the same effects on non-bonded interactions at the various protein-protein interfaces, have decidedly different effects on the flexibility of the complex. This study provides a detailed model of the HIV-1 capsid and its interactions with small molecules, informing structure-based drug design, as well as experimental design and interpretation.

3.
Cell Chem Biol ; 31(3): 477-486.e7, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38518746

RESUMO

Of the targets for HIV-1 therapeutics, the capsid core is a relatively unexploited but alluring drug target due to its indispensable roles throughout virus replication. Because of this, we aimed to identify "clickable" covalent modifiers of the HIV-1 capsid protein (CA) for future functionalization. We screened a library of fluorosulfate compounds that can undergo sulfur(VI) fluoride exchange (SuFEx) reactions, and five compounds were identified as hits. These molecules were further characterized for antiviral effects. Several compounds impacted in vitro capsid assembly. One compound, BBS-103, covalently bound CA via a SuFEx reaction to Tyr145 and had antiviral activity in cell-based assays by perturbing virus production, but not uncoating. The covalent binding of compounds that target the HIV-1 capsid could aid in the future design of antiretroviral drugs or chemical probes that will help study aspects of HIV-1 replication.


Assuntos
Proteínas do Capsídeo , HIV-1 , Proteínas do Capsídeo/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Montagem de Vírus , Replicação Viral , Antivirais/farmacologia
4.
Mol Ther Nucleic Acids ; 33: 794-809, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37662965

RESUMO

Gene therapy strategies that effectively inhibit HIV-1 replication are needed to reduce the requirement for lifelong antiviral therapy and potentially achieve a functional cure. We previously designed self-activating lentiviral vectors that efficiently delivered and expressed a Vif-resistant mutant of APOBEC3G (A3G-D128K) to T cells, which potently inhibited HIV-1 replication and spread with no detectable virus. Here, we developed vectors that express A3G-D128K, membrane-associated fusion inhibitor peptide mC46, and O6-methylguanine-DNA-methyltransferase (MGMT) selectable marker for in vivo selection of transduced CD34+ hematopoietic stem and progenitor cells. MGMT-selected T cell lines MT4, CEM, and PM1 expressing A3G-D128K (with or without mC46) potently inhibited NL4-3 infection up to 45 days post infection with no detectable viral replication. Expression of mC46 was sufficient to block infection >80% in a single-cycle assay. Importantly, expression of mC46 provided a selective advantage to the A3G-D128K-modified T cells in the presence of replication competent virus. This combinational approach to first block HIV-1 entry with mC46, and then block any breakthrough infection with A3G-D128K, could provide an effective gene therapy treatment and a potential functional cure for HIV-1 infection.

5.
Mol Ther Methods Clin Dev ; 28: 366-384, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36879849

RESUMO

Barriers to effective gene therapy for many diseases include the number of modified target cells required to achieve therapeutic outcomes and host immune responses to expressed therapeutic proteins. As long-lived cells specialized for protein secretion, antibody-secreting B cells are an attractive target for foreign protein expression in blood and tissue. To neutralize HIV-1, we developed a lentiviral vector (LV) gene therapy platform for delivery of the anti-HIV-1 immunoadhesin, eCD4-Ig, to B cells. The EµB29 enhancer/promoter in the LV limited gene expression in non-B cell lineages. By engineering a knob-in-hole-reversed (KiHR) modification in the CH3-Fc eCD4-Ig domain, we reduced interactions between eCD4-Ig and endogenous B cell immunoglobulin G proteins, which improved HIV-1 neutralization potency. Unlike previous approaches in non-lymphoid cells, eCD4-Ig-KiHR produced in B cells promoted HIV-1 neutralizing protection without requiring exogenous TPST2, a tyrosine sulfation enzyme required for eCD4-Ig-KiHR function. This finding indicated that B cell machinery is well suited to produce therapeutic proteins. Lastly, to overcome the inefficient transduction efficiency associated with VSV-G LV delivery to primary B cells, an optimized measles pseudotyped LV packaging methodology achieved up to 75% transduction efficiency. Overall, our findings support the utility of B cell gene therapy platforms for therapeutic protein delivery.

6.
Gigascience ; 122023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36939008

RESUMO

BACKGROUND: Genetic recombination is a tremendous source of intrahost diversity in viruses and is critical for their ability to rapidly adapt to new environments or fitness challenges. While viruses are routinely characterized using high-throughput sequencing techniques, characterizing the genetic products of recombination in next-generation sequencing data remains a challenge. Viral recombination events can be highly diverse and variable in nature, including simple duplications and deletions, or more complex events such as copy/snap-back recombination, intervirus or intersegment recombination, and insertions of host nucleic acids. Due to the variable mechanisms driving virus recombination and the different selection pressures acting on the progeny, recombination junctions rarely adhere to simple canonical sites or sequences. Furthermore, numerous different events may be present simultaneously in a viral population, yielding a complex mutational landscape. FINDINGS: We have previously developed an algorithm called ViReMa (Virus Recombination Mapper) that bootstraps the bowtie short-read aligner to capture and annotate a wide range of recombinant species found within virus populations. Here, we have updated ViReMa to provide an "error density" function designed to accurately detect recombination events in the longer reads now routinely generated by the Illumina platforms and provide output reports for multiple types of recombinant species using standardized formats. We demonstrate the utility and flexibility of ViReMa in different settings to report deletion events in simulated data from Flock House virus, copy-back RNA species in Sendai viruses, short duplication events in HIV, and virus-to-host recombination in an archaeal DNA virus.


Assuntos
Ácidos Nucleicos , Vírus , RNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Vírus/genética , Recombinação Genética , Genoma Viral
7.
iScience ; 25(12): 105490, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36505924

RESUMO

It is unclear how the activation of HIV-1 transcription affects chromatin structure. We interrogated chromatin organization both genome-wide and nearby HIV-1 integration sites using Hi-C and ATAC-seq. In conjunction, we analyzed the transcription of the HIV-1 genome and neighboring genes. We found that long-range chromatin contacts did not differ significantly between uninfected cells and those harboring an integrated HIV-1 genome, whether the HIV-1 genome was actively transcribed or inactive. Instead, the activation of HIV-1 transcription changes chromatin accessibility immediately downstream of the provirus, demonstrating that HIV-1 can alter local cellular chromatin structure. Finally, we examined HIV-1 and neighboring host gene transcripts with long-read sequencing and found populations of chimeric RNAs both virus-to-host and host-to-virus. Thus, multiomics profiling revealed that the activation of HIV-1 transcription led to local changes in chromatin organization and altered the expression of neighboring host genes.

8.
Nucleic Acids Res ; 50(17): e98, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-35736235

RESUMO

Alternative splicing (AS) is necessary for viral proliferation in host cells and a critical regulatory component of viral gene expression. Conventional RNA-seq approaches provide incomplete coverage of AS due to their short read lengths and are susceptible to biases and artifacts introduced in prevailing library preparation methodologies. Moreover, viral splicing studies are often conducted separately from host cell transcriptome analysis, precluding an assessment of the viral manipulation of host splicing machinery. To address current limitations, we developed a quantitative full-length direct cDNA sequencing strategy to simultaneously profile viral and host cell transcripts. This nanopore-based approach couples processive reverse transcriptases with a novel one-step chemical ablation of 3' RNA ends (termed CASPR), which decreases ribosomal RNA reads and enriches polyadenylated coding sequences. We extensively validate our approach using synthetic reference transcripts and show that CASPR doubles the breadth of coverage per transcript and increases detection of long transcripts (>4 kb), while being functionally equivalent to PolyA+ selection for transcript quantification. We used our approach to interrogate host cell and HIV-1 transcript dynamics during viral reactivation and identified novel putative HIV-1 host factors containing exon skipping or novel intron retentions and delineated the HIV-1 transcriptional state associated with these differentially regulated host factors.


Assuntos
Processamento Alternativo , HIV-1/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , DNA Complementar/genética , RNA Polimerases Dirigidas por DNA/genética , Perfilação da Expressão Gênica/métodos , Infecções por HIV/virologia , Poli A , RNA Ribossômico , Análise de Sequência de RNA/métodos , Transcriptoma
9.
Cell Death Dis ; 13(5): 448, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35538058

RESUMO

The family of hexokinases (HKs) catalyzes the first step of glycolysis, the ATP-dependent phosphorylation of glucose to glucose-6-phosphate. While HK1 and HK2 are ubiquitously expressed, the less well-studied HK3 is primarily expressed in hematopoietic cells and tissues and is highly upregulated during terminal differentiation of some acute myeloid leukemia (AML) cell line models. Here we show that expression of HK3 is predominantly originating from myeloid cells and that the upregulation of this glycolytic enzyme is not restricted to differentiation of leukemic cells but also occurs during ex vivo myeloid differentiation of healthy CD34+ hematopoietic stem and progenitor cells. Within the hematopoietic system, we show that HK3 is predominantly expressed in cells of myeloid origin. CRISPR/Cas9 mediated gene disruption revealed that loss of HK3 has no effect on glycolytic activity in AML cell lines while knocking out HK2 significantly reduced basal glycolysis and glycolytic capacity. Instead, loss of HK3 but not HK2 led to increased sensitivity to ATRA-induced cell death in AML cell lines. We found that HK3 knockout (HK3-null) AML cells showed an accumulation of reactive oxygen species (ROS) as well as DNA damage during ATRA-induced differentiation. RNA sequencing analysis confirmed pathway enrichment for programmed cell death, oxidative stress, and DNA damage response in HK3-null AML cells. These signatures were confirmed in ATAC sequencing, showing that loss of HK3 leads to changes in chromatin configuration and increases the accessibility of genes involved in apoptosis and stress response. Through isoform-specific pulldowns, we furthermore identified a direct interaction between HK3 and the proapoptotic BCL-2 family member BIM, which has previously been shown to shorten myeloid life span. Our findings provide evidence that HK3 is dispensable for glycolytic activity in AML cells while promoting cell survival, possibly through direct interaction with the BH3-only protein BIM during ATRA-induced neutrophil differentiation.


Assuntos
Hexoquinase , Leucemia Mieloide Aguda , Sobrevivência Celular/genética , Glicólise/genética , Hexoquinase/genética , Hexoquinase/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Células Mieloides/metabolismo
10.
Blood Adv ; 6(18): 5267-5278, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35404997

RESUMO

Administration of ex vivo expanded somatic myeloid progenitors has been explored as a way to facilitate a more rapid myeloid recovery and improve overall survival after myeloablation. Recent advances in induced pluripotent stem cell (iPSC) technologies have created alternative platforms for supplying off-the-shelf immunologically compatible myeloid progenitors, including cellular products derived from major histocompatibility complex (MHC) homozygous superdonors, potentially increasing the availability of MHC-matching cells and maximizing the utility of stem cell banking. However, the teratogenic and tumorigenic potential of iPSC-derived progenitor cells and whether they will induce alloreactive antibodies upon transfer remain unclear. We evaluated the safety and efficacy of using CD34+CD45+ hematopoietic progenitors derived from MHC homozygous iPSCs (iHPs) to treat cytopenia after myeloablative hematopoietic stem cell (HSC) transplantation in a Mauritian cynomolgus macaque (MCM) nonhuman primate (NHP) model. We demonstrated that infusion of iHPs was well tolerated and safe, observing no teratomas or tumors in the MCMs up to 1 year after HSC transplantation and iHP infusion. Importantly, the iHPs also did not induce significant levels of alloantibodies in MHC-matched or -mismatched immunocompetent MCMs, even after increasing MHC expression on iHPs with interferon-γ. These results support the feasibility of iHP use in the setting of myeloablation and suggest that iHP products pose a low risk of inducing alloreactive antibodies.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Pluripotentes Induzidas , Animais , Antígenos CD34 , Interferon gama , Isoanticorpos , Macaca fascicularis , Complexo Principal de Histocompatibilidade
11.
STAR Protoc ; 3(1): 101228, 2022 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-35284833

RESUMO

Measles virus envelope pseudotyped LV (MV-LV) can achieve high B cell transduction rates (up to 50%), but suffers from low titers. To overcome current limitations, we developed an optimized MV-LV production protocol that achieved consistent B cell transduction efficiency up to 75%. We detail this protocol along with analytical assays to assess the results of MV-LV mediated B cell transduction, including flow cytometry for B cell phenotypic characterization and measurement of transduction efficiency, and ddPCR for VCN analysis.


Assuntos
Lentivirus , Vírus do Sarampo , Vetores Genéticos/genética , Glicoproteínas/genética , Humanos , Lentivirus/genética , Vírus do Sarampo/genética , Transdução Genética
12.
Int J Mol Sci ; 23(4)2022 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35216446

RESUMO

Human hematopoietic stem/progenitor cell (HSPC)-based gene therapy is a promising direction for curing HIV-1-infected individuals. The zinc finger protein (2LTRZFP) designed to target the 2-LTR-circle junction of HIV-1 cDNA was previously reported as an intracellular antiviral molecular scaffold that prevents HIV integration. Here, we elucidate the efficacy and safety of using 2LTRZFP in human CD34+ HSPCs. We transduced 2LTRZFP which has the mCherry tag (2LTRZFPmCherry) into human CD34+ HSPCs using a lentiviral vector. The 2LTRZFPmCherry-transduced HSPCs were subsequently differentiated into macrophages. The expression levels of pro-apoptotic proteins of the 2LTRZFPmCherry-transduced HSPCs showed no significant difference from those of the non-transduced control. Furthermore, the 2LTRZFPmCherry-transduced HSPCs were successfully differentiated into mature macrophages, which had normal phagocytic function. The cytokine secretion assay demonstrated that 2LTRZFPmCherry-transduced CD34+ derived macrophages promoted the polarization towards classically activated (M1) subtypes. More importantly, the 2LTRZFPmCherry transduced cells significantly exhibited resistance to HIV-1 integration in vitro. Our findings demonstrate that the 2LTRZFPmCherry-transduced macrophages were found to be functionally and phenotypically normal, with no adverse effects of the anti-HIV-1 scaffold. Our data suggest that the anti-HIV-1 integrase scaffold is a promising antiviral molecule that could be applied to human CD34+ HSPC-based gene therapy for AIDS patients.


Assuntos
Infecções por HIV/metabolismo , HIV-1/patogenicidade , Células-Tronco Hematopoéticas/metabolismo , Macrófagos/metabolismo , Células-Tronco/metabolismo , Dedos de Zinco/fisiologia , Antígenos CD34/metabolismo , Terapia Genética/métodos , Humanos
13.
Nucleic Acids Res ; 50(7): e41, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35018461

RESUMO

Adaptation of viruses to their environments occurs through the acquisition of both novel single-nucleotide variants (SNV) and recombination events including insertions, deletions, and duplications. The co-occurrence of SNVs in individual viral genomes during their evolution has been well-described. However, unlike covariation of SNVs, studying the correlation between recombination events with each other or with SNVs has been hampered by their inherent genetic complexity and a lack of bioinformatic tools. Here, we expanded our previously reported CoVaMa pipeline (v0.1) to measure linkage disequilibrium between recombination events and SNVs within both short-read and long-read sequencing datasets. We demonstrate this approach using long-read nanopore sequencing data acquired from Flock House virus (FHV) serially passaged in vitro. We found SNVs that were either correlated or anti-correlated with large genomic deletions generated by nonhomologous recombination that give rise to Defective-RNAs. We also analyzed NGS data from longitudinal HIV samples derived from a patient undergoing antiretroviral therapy who proceeded to virological failure. We found correlations between insertions in the p6Gag and mutations in Gag cleavage sites. This report confirms previous findings and provides insights on novel associations between SNVs and specific recombination events within the viral genome and their role in viral evolution.


Assuntos
Variação Genética , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Recombinação Genética , Vírus de DNA/genética , Genoma Viral/genética , Genômica , Humanos
14.
Viruses ; 13(3)2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807824

RESUMO

The Human Immunodeficiency Virus type 1 (HIV-1) virion contains a conical shell, termed capsid, encasing the viral RNA genome. After cellular entry of the virion, the capsid is released and ensures the protection and delivery of the HIV-1 genome to the host nucleus for integration. The capsid relies on many virus-host factor interactions which are regulated spatiotemporally throughout the course of infection. In this paper, we will review the current understanding of the highly dynamic HIV-1 capsid-host interplay during the early stages of viral replication, namely intracellular capsid trafficking after viral fusion, nuclear import, uncoating, and integration of the viral genome into host chromatin. Conventional anti-retroviral therapies primarily target HIV-1 enzymes. Insights of capsid structure have resulted in a first-in-class, long-acting capsid-targeting inhibitor, GS-6207 (Lenacapavir). This inhibitor binds at the interface between capsid protein subunits, a site known to bind host factors, interferes with capsid nuclear import, HIV particle assembly, and ordered assembly. Our review will highlight capsid structure, the host factors that interact with capsid, and high-throughput screening techniques, specifically genomic and proteomic approaches, that have been and can be used to identify host factors that interact with capsid. Better structural and mechanistic insights into the capsid-host factor interactions will significantly inform the understanding of HIV-1 pathogenesis and the development of capsid-centric antiretroviral therapeutics.


Assuntos
Proteínas do Capsídeo/imunologia , Infecções por HIV/virologia , HIV-1/fisiologia , Interações entre Hospedeiro e Microrganismos/imunologia , Proteínas do Vírus da Imunodeficiência Humana/imunologia , Vírion/imunologia , Humanos , Desenvelopamento do Vírus
15.
Nucleic Acids Res ; 49(12): e70, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-33849057

RESUMO

Technical challenges remain in the sequencing of RNA viruses due to their high intra-host diversity. This bottleneck is particularly pronounced when interrogating long-range co-evolved genetic interactions given the read-length limitations of next-generation sequencing platforms. This has hampered the direct observation of these genetic interactions that code for protein-protein interfaces with relevance in both drug and vaccine development. Here we overcome these technical limitations by developing a nanopore-based long-range viral sequencing pipeline that yields accurate single molecule sequences of circulating virions from clinical samples. We demonstrate its utility in observing the evolution of individual HIV Gag-Pol genomes in response to antiviral pressure. Our pipeline, called Multi-read Hairpin Mediated Error-correction Reaction (MrHAMER), yields >1000s of viral genomes per sample at 99.9% accuracy, maintains the original proportion of sequenced virions present in a complex mixture, and allows the detection of rare viral genomes with their associated mutations present at <1% frequency. This method facilitates scalable investigation of genetic correlates of resistance to both antiviral therapy and immune pressure and enables the identification of novel host-viral and viral-viral interfaces that can be modulated for therapeutic benefit.


Assuntos
HIV/genética , Sequenciamento por Nanoporos/métodos , DNA Complementar , Farmacorresistência Viral/genética , Evolução Molecular , Proteínas de Fusão gag-pol/genética , Genoma Viral , HIV/isolamento & purificação , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Humanos , Mutação , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
16.
J Mol Biol ; 433(8): 166842, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33539875

RESUMO

HIV-1 Gag and Gag-Pol are responsible for viral assembly and maturation and represent a major paradigm for enveloped virus assembly. Numerous intracellular Gag-containing complexes (GCCs) have been identified in cellular lysates using sucrose gradient ultracentrifugation. While these complexes are universally present in Gag-expressing cells, their roles in virus assembly are not well understood. Here we demonstrate that most GCC species are predominantly comprised of monomeric or dimeric Gag molecules bound to ribosomal complexes, and as such, are not on-pathway intermediates in HIV assembly. Rather, these GCCs represent a population of Gag that is not yet functionally committed for incorporation into a viable virion precursor. We hypothesize that these complexes act as a reservoir of monomeric Gag that can incorporate into assembling viruses, and serve to mitigate non-specific intracellular Gag oligomerization. We have identified a subset of large GCC complexes, comprising more than 20 Gag molecules, that may be equivalent to membrane-associated puncta previously shown to be bona fide assembling-virus intermediates. This work provides a clear rationale for the existence of diverse GCCs, and serves as the foundation for characterizing on-pathway intermediates early in virus assembly.


Assuntos
HIV-1/metabolismo , Montagem de Vírus/fisiologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Linhagem Celular , Genoma Viral , Células HEK293 , Humanos , Marcação por Isótopo , Vírion/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética
17.
J Mol Biol ; 432(10): 3338-3352, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32259542

RESUMO

Reverse transcriptase (RT) enzymes are indispensable tools for interrogating diverse aspects of RNA metabolism and transcriptome composition. Due to the growing interest in sequence and structural complexity of long RNA molecules, processive RT enzymes are now required for preserving linkage and information content in mixed populations of transcripts, and the low-processivity RT enzymes that are commercially available cannot meet this need. MarathonRT is encoded within a eubacterial group II intron, and it has been shown to efficiently copy highly structured long RNA molecules in a single pass. In this work, we systematically characterize MarathonRT as a tool enzyme and optimize its performance in a variety of applications that include single-cycle reverse transcription of long RNAs, dimethyl sulfate mutational profiling (DMS-MaP), selective 2'-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-MaP), using ultra-long amplicons and the detection of natural RNA base modifications. By diversifying MarathonRT reaction protocols, we provide an upgraded suite of tools for cutting-edge RNA research and clinical application.


Assuntos
Bactérias/enzimologia , DNA Polimerase Dirigida por RNA/metabolismo , RNA/química , RNA/metabolismo , Proteínas de Bactérias/metabolismo , Linhagem Celular , Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Conformação de Ácido Nucleico , RNA/genética , Análise de Sequência de RNA
19.
Mol Ther Nucleic Acids ; 18: 1023-1038, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31778955

RESUMO

Strategies to control HIV-1 replication without antiviral therapy are needed to achieve a functional cure. To exploit the innate antiviral function of restriction factor cytidine deaminase APOBEC3G (A3G), we developed self-activating lentiviral vectors that efficiently deliver HIV-1 Vif-resistant mutant A3G-D128K to target cells. To circumvent APOBEC3 expression in virus-producing cells, which diminishes virus infectivity, a vector containing two overlapping fragments of A3G-D128K was designed that maintained the gene in an inactive form in the virus-producer cells. However, during transduction of target cells, retroviral recombination between the direct repeats reconstituted an active A3G-D128K in 89%-98% of transduced cells. Lentiviral vectors that expressed A3G-D128K transduced CD34+ hematopoietic stem and progenitor cells with a high efficiency (>30%). A3G-D128K expression in T cell lines CEM, CEMSS, and PM1 potently inhibited spreading infection of several HIV-1 subtypes by C-to-U deamination leading to lethal G-to-A hypermutation and inhibition of reverse transcription. SIVmac239 and HIV-2 were not inhibited, since their Vifs degraded A3G-D128K. A3G-D128K expression in CEM cells potently suppressed HIV-1 replication for >3.5 months without detectable resistant virus, suggesting a high genetic barrier for the emergence of A3G-D128K resistance. Because of this, A3G-D128K expression in HIV-1 target cells is a potential anti-HIV gene therapy approach that could be combined with other therapies for the treatment and functional cure of HIV-1 infection.

20.
Blood ; 134(16): 1298-1311, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31416800

RESUMO

Therapeutic gene delivery to hematopoietic stem cells (HSCs) holds great potential as a life-saving treatment of monogenic, oncologic, and infectious diseases. However, clinical gene therapy is severely limited by intrinsic HSC resistance to modification with lentiviral vectors (LVs), thus requiring high doses or repeat LV administration to achieve therapeutic gene correction. Here we show that temporary coapplication of the cyclic resveratrol trimer caraphenol A enhances LV gene delivery efficiency to human and nonhuman primate hematopoietic stem and progenitor cells with integrating and nonintegrating LVs. Although significant ex vivo, this effect was most dramatically observed in human lineages derived from HSCs transplanted into immunodeficient mice. We further show that caraphenol A relieves restriction of LV transduction by altering the levels of interferon-induced transmembrane (IFITM) proteins IFITM2 and IFITM3 and their association with late endosomes, thus augmenting LV core endosomal escape. Caraphenol A-mediated IFITM downregulation did not alter the LV integration pattern or bias lineage differentiation. Taken together, these findings compellingly demonstrate that the pharmacologic modification of intrinsic immune restriction factors is a promising and nontoxic approach for improving LV-mediated gene therapy.


Assuntos
Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/virologia , Proteínas de Membrana/efeitos dos fármacos , Resveratrol/farmacologia , Transdução Genética/métodos , Animais , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Vetores Genéticos , Xenoenxertos , Humanos , Lentivirus , Proteínas de Membrana/metabolismo , Camundongos , Transporte Proteico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...