Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evol Appl ; 16(2): 293-310, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36793689

RESUMO

Genomic studies are uncovering extensive cryptic diversity within reef-building corals, suggesting that evolutionarily and ecologically relevant diversity is highly underestimated in the very organisms that structure coral reefs. Furthermore, endosymbiotic algae within coral host species can confer adaptive responses to environmental stress and may represent additional axes of coral genetic variation that are not constrained by taxonomic divergence of the cnidarian host. Here, we examine genetic variation in a common and widespread, reef-building coral, Acropora tenuis, and its associated endosymbiotic algae along the entire expanse of the Great Barrier Reef (GBR). We use SNPs derived from genome-wide sequencing to characterize the cnidarian coral host and organelles from zooxanthellate endosymbionts (genus Cladocopium). We discover three distinct and sympatric genetic clusters of coral hosts, whose distributions appear associated with latitude and inshore-offshore reef position. Demographic modelling suggests that the divergence history of the three distinct host taxa ranges from 0.5 to 1.5 million years ago, preceding the GBR's formation, and has been characterized by low-to-moderate ongoing inter-taxon gene flow, consistent with occasional hybridization and introgression typifying coral evolution. Despite this differentiation in the cnidarian host, A. tenuis taxa share a common symbiont pool, dominated by the genus Cladocopium (Clade C). Cladocopium plastid diversity is not strongly associated with host identity but varies with reef location relative to shore: inshore colonies contain lower symbiont diversity on average but have greater differences between colonies as compared with symbiont communities from offshore colonies. Spatial genetic patterns of symbiont communities could reflect local selective pressures maintaining coral holobiont differentiation across an inshore-offshore environmental gradient. The strong influence of environment (but not host identity) on symbiont community composition supports the notion that symbiont community composition responds to habitat and may assist in the adaptation of corals to future environmental change.

2.
Sci Total Environ ; 844: 157049, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-35780903

RESUMO

The rapid decline of shallow coral reefs has increased the interest in the long-understudied mesophotic coral ecosystems (MCEs). However, MCEs are usually characterised by rather low to moderate scleractinian coral cover, with only a few descriptions of high coral cover at depth. Here, we explored eight islands across French Polynesia over a wide depth range (6 to 120 m) to identify coral cover hotspots at mesophotic depths and the co-occurrent biotic groups and abiotic factors that influence such high scleractinian cover. Using Bayesian modelling, we found that 20 out of 64 of studied deep sites exhibited a coral cover higher than expected in the mesophotic range (e.g. as high as 81.8 % at 40 m, 74.5 % at 60 m, 53 % at 90 m and 42 % at 120 m vs the average expected values based on the model of 31.2 % at 40 m, 22.8 % at 60 m, 14.6 % at 90 m and 9.8 % at 120 m). Omitting the collinear factors light-irradiance and depth, these 'hotspots' of coral cover corresponded to mesophotic sites and depths characterised by hard substrate, a steep to moderate slope, and the dominance of laminar corals. Our work unveils the presence of unexpectedly and unique high coral cover communities at mesophotic depths in French Polynesia, highlighting the importance of expanding the research on deeper depths for the potential relevance in the conservation management of tropical coral reefs.


Assuntos
Antozoários , Animais , Teorema de Bayes , Recifes de Corais , Ecossistema , Polinésia
3.
R Soc Open Sci ; 8(11): 210139, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34804562

RESUMO

Climate change and consequent coral bleaching are causing the disappearance of reef-building corals worldwide. While bleaching episodes significantly impact shallow waters, little is known about their impact on mesophotic coral communities. We studied the prevalence of coral bleaching two to three months after a heat stress event, along an extreme depth range from 6 to 90 m in French Polynesia. Bayesian modelling showed a decreasing probability of bleaching of all coral genera over depth, with little to no bleaching observed at lower mesophotic depths (greater than or equal to 60 m). We found that depth-generalist corals benefit more from increasing depth than depth-specialists (corals with a narrow depth range). Our data suggest that the reduced prevalence of bleaching with depth, especially from shallow to upper mesophotic depths (40 m), had a stronger relation with the light-irradiance attenuation than temperature. While acknowledging the geographical and temporal variability of the role of mesophotic reefs as spatial refuges during thermal stress, we ought to understand why coral bleaching reduces with depth. Future studies should consider repeated monitoring and detailed ecophysiological and environmental data. Our study demonstrated how increasing depth may offer a level of protection and that lower mesophotic communities could escape the impacts of a thermal bleaching event.

4.
Curr Biol ; 31(11): 2286-2298.e8, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33811819

RESUMO

Coral reefs are the epitome of species diversity, yet the number of described scleractinian coral species, the framework-builders of coral reefs, remains moderate by comparison. DNA sequencing studies are rapidly challenging this notion by exposing a wealth of undescribed diversity, but the evolutionary and ecological significance of this diversity remains largely unclear. Here, we present an annotated genome for one of the most ubiquitous corals in the Indo-Pacific (Pachyseris speciosa) and uncover, through a comprehensive genomic and phenotypic assessment, that it comprises morphologically indistinguishable but ecologically divergent lineages. Demographic modeling based on whole-genome resequencing indicated that morphological crypsis (across micro- and macromorphological traits) was due to ancient morphological stasis rather than recent divergence. Although the lineages occur sympatrically across shallow and mesophotic habitats, extensive genotyping using a rapid molecular assay revealed differentiation of their ecological distributions. Leveraging "common garden" conditions facilitated by the overlapping distributions, we assessed physiological and quantitative skeletal traits and demonstrated concurrent phenotypic differentiation. Lastly, spawning observations of genotyped colonies highlighted the potential role of temporal reproductive isolation in the limited admixture, with consistent genomic signatures in genes related to morphogenesis and reproduction. Overall, our findings demonstrate the presence of ecologically and phenotypically divergent coral species without substantial morphological differentiation and provide new leads into the potential mechanisms facilitating such divergence. More broadly, they indicate that our current taxonomic framework for reef-building corals may be scratching the surface of the ecologically relevant diversity on coral reefs, consequently limiting our ability to protect or restore this diversity effectively.


Assuntos
Antozoários/classificação , Biodiversidade , Recifes de Corais , Clima Tropical , Animais , Antozoários/genética , Morfogênese/genética , Reprodução/genética
5.
ISME J ; 15(5): 1564-1568, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33452473

RESUMO

The symbiosis between scleractinian corals and photosynthetic algae from the family Symbiodiniaceae underpins the health and productivity of tropical coral reef ecosystems. While this photosymbiotic association has been extensively studied in shallow waters (<30 m depth), we do not know how deeper corals, inhabiting large and vastly underexplored mesophotic coral ecosystems, modulate their symbiotic associations to grow in environments that receive less than 1% of surface irradiance. Here we report on the deepest photosymbiotic scleractinian corals collected to date (172 m depth), and use amplicon sequencing to identify the associated symbiotic communities. The corals, identified as Leptoseris hawaiiensis, were confirmed to host Symbiodiniaceae, predominantly of the genus Cladocopium, a single species of endolithic algae from the genus Ostreobium, and diverse communities of prokaryotes. Our results expand the reported depth range of photosynthetic scleractinian corals (0-172 m depth), and provide new insights on their symbiotic associations at the lower depth extremes of tropical coral reefs.


Assuntos
Antozoários , Dinoflagellida , Animais , Recifes de Corais , Ecossistema , Simbiose
6.
Microbiome ; 8(1): 57, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32317019

RESUMO

BACKGROUND: Giant clams and scleractinian (reef-building) corals are keystone species of coral reef ecosystems. The basis of their ecological success is a complex and fine-tuned symbiotic relationship with microbes. While the effect of environmental change on the composition of the coral microbiome has been heavily studied, we know very little about the composition and sensitivity of the microbiome associated with clams. Here, we explore the influence of increasing temperature on the microbial community (bacteria and dinoflagellates from the family Symbiodiniaceae) harbored by giant clams, maintained either in isolation or exposed to other reef species. We created artificial benthic assemblages using two coral species (Pocillopora damicornis and Acropora cytherea) and one giant clam species (Tridacna maxima) and studied the microbial community in the latter using metagenomics. RESULTS: Our results led to three major conclusions. First, the health status of giant clams depended on the composition of the benthic species assemblages. Second, we discovered distinct microbiotypes in the studied T. maxima population, one of which was disproportionately dominated by Vibrionaceae and directly linked to clam mortality. Third, neither the increase in water temperature nor the composition of the benthic assemblage had a significant effect on the composition of the Symbiodiniaceae and bacterial communities of T. maxima. CONCLUSIONS: Altogether, our results suggest that at least three microbiotypes naturally exist in the studied clam populations, regardless of water temperature. These microbiotypes plausibly provide similar functions to the clam host via alternate molecular pathways as well as microbiotype-specific functions. This redundancy in functions among microbiotypes together with their specificities provides hope that giant clam populations can tolerate some levels of environmental variation such as increased temperature. Importantly, the composition of the benthic assemblage could make clams susceptible to infections by Vibrionaceae, especially when water temperature increases. Video abstract.


Assuntos
Antozoários , Bivalves , Recifes de Corais , Código de Barras de DNA Taxonômico , Microbiota , Animais , Antozoários/microbiologia , Antozoários/fisiologia , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bivalves/microbiologia , Bivalves/fisiologia , Dinoflagellida/classificação , Dinoflagellida/crescimento & desenvolvimento , Simbiose , Temperatura
7.
Front Microbiol ; 10: 1775, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31474944

RESUMO

The coral microbiome is known to fluctuate in response to environmental variation and has been suggested to vary seasonally. However, most studies to date, particularly studies on bacterial communities, have examined temporal variation over a time frame of less than 1 year, which is insufficient to establish if microbiome variations are indeed seasonal in nature. The present study focused on expanding our understanding of long-term variability in microbial community composition using two common coral species, Acropora hyacinthus, and Acropora spathulata, at two mid-shelf reefs on the Great Barrier Reef. By sampling over a 2-year time period, this study aimed to determine whether temporal variations reflect seasonal cycles. Community composition of both bacteria and Symbiodiniaceae was characterized through 16S rRNA gene and ITS2 rDNA metabarcoding. We observed significant variations in community composition of both bacteria and Symbiodiniaceae among time points for A. hyacinthus and A. spathulata. However, there was no evidence to suggest that temporal variations were cyclical in nature and represented seasonal variation. Clear evidence for differences in the microbial communities found between reefs suggests that reef location and coral species play a larger role than season in driving microbial community composition in corals. In order to identify the basis of temporal patterns in coral microbial community composition, future studies should employ longer time series of sampling at sufficient temporal resolution to identify the environmental correlates of microbiome variation.

8.
Sci Rep ; 9(1): 7921, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138834

RESUMO

One of the mechanisms of rapid adaptation or acclimatization to environmental changes in corals is through the dynamics of the composition of their associated endosymbiotic Symbiodiniaceae community. The various species of these dinoflagellates are characterized by different biological properties, some of which can confer stress tolerance to the coral host. Compelling evidence indicates that the corals' Symbiodiniaceae community can change via shuffling and/or switching but the ecological relevance and the governance of these processes remain elusive. Using a qPCR approach to follow the dynamics of Symbiodiniaceae genera in tagged colonies of three coral species over a 10-18 month period, we detected putative genus-level switching of algal symbionts, with coral species-specific rates of occurrence. However, the dynamics of the corals' Symbiodiniaceae community composition was not driven by environmental parameters. On the contrary, putative shuffling event were observed in two coral species during anomalous seawater temperatures and nutrient concentrations. Most notably, our results reveal that a suit of permanent Symbiodiniaceae genera is maintained in each colony in a specific range of quantities, giving a unique 'Symbiodiniaceae signature' to the host. This individual signature, together with sporadic symbiont switching may account for the intra-specific differences in resistance and resilience observed during environmental anomalies.


Assuntos
Antozoários/fisiologia , Recifes de Corais , Dinoflagellida/fisiologia , Simbiose , Aclimatação , Animais , Antozoários/genética , Biodiversidade , DNA/genética , Dinoflagellida/genética , Polinésia , Água do Mar/química , Especificidade da Espécie , Temperatura
9.
Nature ; 568(7752): 387-390, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30944475

RESUMO

Changes in disturbance regimes due to climate change are increasingly challenging the capacity of ecosystems to absorb recurrent shocks and reassemble afterwards, escalating the risk of widespread ecological collapse of current ecosystems and the emergence of novel assemblages1-3. In marine systems, the production of larvae and recruitment of functionally important species are fundamental processes for rebuilding depleted adult populations, maintaining resilience and avoiding regime shifts in the face of rising environmental pressures4,5. Here we document a regional-scale shift in stock-recruitment relationships of corals along the Great Barrier Reef-the world's largest coral reef system-following unprecedented back-to-back mass bleaching events caused by global warming. As a consequence of mass mortality of adult brood stock in 2016 and 2017 owing to heat stress6, the amount of larval recruitment declined in 2018 by 89% compared to historical levels. For the first time, brooding pocilloporids replaced spawning acroporids as the dominant taxon in the depleted recruitment pool. The collapse in stock-recruitment relationships indicates that the low resistance of adult brood stocks to repeated episodes of coral bleaching is inexorably tied to an impaired capacity for recovery, which highlights the multifaceted processes that underlie the global decline of coral reefs. The extent to which the Great Barrier Reef will be able to recover from the collapse in stock-recruitment relationships remains uncertain, given the projected increased frequency of extreme climate events over the next two decades7.


Assuntos
Antozoários/crescimento & desenvolvimento , Antozoários/fisiologia , Recifes de Corais , Aquecimento Global , Animais , Austrália , Temperatura Alta/efeitos adversos , Larva/fisiologia , Incerteza
10.
ISME J ; 13(6): 1635-1638, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30705413

RESUMO

The establishment of coral microbial communities in early developmental stages is fundamental to coral fitness, but its drivers are largely unknown, particularly for bacteria. Using an in situ reciprocal transplant experiment, we examined the influence of parental, planulation and early recruit environments on the microbiome of brooded offspring in the coral Pocillopora damicornis. 16S rRNA and ITS2 rDNA gene metabarcoding showed that bacterial and microalgal endosymbiont communities varied according to parental and planulation environments, but not with early recruit environment. Only a small number of bacterial strains were shared between offspring and their respective parents, revealing bacterial establishment as largely environmentally driven in very early life stages. Conversely, microalgal communities of recruits were highly similar to those of their respective parents, but also contained additional low abundance strains, suggesting both vertical transmission and novel ('horizontal') acquisition. Altogether, recruits harboured more variable microbiomes compared to their parents, indicating winnowing occurs as corals mature.


Assuntos
Antozoários/crescimento & desenvolvimento , Antozoários/microbiologia , Bactérias/isolamento & purificação , Dinoflagellida/isolamento & purificação , Animais , Antozoários/parasitologia , Antozoários/fisiologia , Bactérias/classificação , Bactérias/genética , Fenômenos Fisiológicos Bacterianos , Dinoflagellida/classificação , Dinoflagellida/genética , Microbiota , Simbiose
11.
Sci Rep ; 8(1): 11885, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089786

RESUMO

Increases in the frequency of perturbations that drive coral community structure, such as severe thermal anomalies and high intensity storms, highlight the need to understand how coral communities recover following multiple disturbances. We describe the dynamics of cover and assemblage composition of corals on exposed inshore reefs in the Palm Islands, central Great Barrier Reef, over 19 years encapsulating major disturbance events such as the severe bleaching event in 1998 and Cyclone Yasi in 2011, along with other minor storm and heat stress events. Over this time, 47.8% of hard coral cover was lost, with a concomitant shift in coral assemblage composition due to taxon-specific rates of mortality during the disturbances, and asymmetric recovery in the aftermath thereof. High recruitment rates of some broadcast-spawning corals, particularly corymbose Acropora spp., even in the absence of adult colonies, indicate that a strong external larval supply replenished the stocks. Conversely, the time required for recovery of slow-growing coral morphologies and life histories was longer than the recurrence times of major disturbances. With interludes between bleaching and cyclones predicted to decrease, the probability of another severe disturbance event before coral cover and assemblage composition approximates historical levels suggests that reefs will continue to erode.


Assuntos
Antozoários/crescimento & desenvolvimento , Antozoários/fisiologia , Animais , Recifes de Corais , Tempestades Ciclônicas , Ilhas , Dinâmica Populacional , Estresse Fisiológico/fisiologia
12.
Nature ; 556(7702): 492-496, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29670282

RESUMO

Global warming is rapidly emerging as a universal threat to ecological integrity and function, highlighting the urgent need for a better understanding of the impact of heat exposure on the resilience of ecosystems and the people who depend on them 1 . Here we show that in the aftermath of the record-breaking marine heatwave on the Great Barrier Reef in 2016 2 , corals began to die immediately on reefs where the accumulated heat exposure exceeded a critical threshold of degree heating weeks, which was 3-4 °C-weeks. After eight months, an exposure of 6 °C-weeks or more drove an unprecedented, regional-scale shift in the composition of coral assemblages, reflecting markedly divergent responses to heat stress by different taxa. Fast-growing staghorn and tabular corals suffered a catastrophic die-off, transforming the three-dimensionality and ecological functioning of 29% of the 3,863 reefs comprising the world's largest coral reef system. Our study bridges the gap between the theory and practice of assessing the risk of ecosystem collapse, under the emerging framework for the International Union for Conservation of Nature (IUCN) Red List of Ecosystems 3 , by rigorously defining both the initial and collapsed states, identifying the major driver of change, and establishing quantitative collapse thresholds. The increasing prevalence of post-bleaching mass mortality of corals represents a radical shift in the disturbance regimes of tropical reefs, both adding to and far exceeding the influence of recurrent cyclones and other local pulse events, presenting a fundamental challenge to the long-term future of these iconic ecosystems.


Assuntos
Antozoários/crescimento & desenvolvimento , Recifes de Corais , Aquecimento Global , Animais , Antozoários/classificação , Austrália , Temperatura Alta/efeitos adversos , Dinâmica Populacional
13.
Science ; 359(6371): 80-83, 2018 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-29302011

RESUMO

Tropical reef systems are transitioning to a new era in which the interval between recurrent bouts of coral bleaching is too short for a full recovery of mature assemblages. We analyzed bleaching records at 100 globally distributed reef locations from 1980 to 2016. The median return time between pairs of severe bleaching events has diminished steadily since 1980 and is now only 6 years. As global warming has progressed, tropical sea surface temperatures are warmer now during current La Niña conditions than they were during El Niño events three decades ago. Consequently, as we transition to the Anthropocene, coral bleaching is occurring more frequently in all El Niño-Southern Oscillation phases, increasing the likelihood of annual bleaching in the coming decades.


Assuntos
Antozoários , Recifes de Corais , El Niño Oscilação Sul , Aquecimento Global , Animais , Água do Mar
14.
Sci Rep ; 7(1): 10066, 2017 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-28855618

RESUMO

Processes of cnidarian evolution, including hybridization and phenotypic plasticity, have complicated the clear diagnosis of species boundaries within the phylum. Pocillopora acuta, a species of scleractinian coral that was recently split from the widespread Pocillopora damicornis species complex, occurs in at least two distinct morphs on the Great Barrier Reef. Contrasting morphology combined with evidence of differential bleaching thresholds among sympatrically distributed colonies suggest that the taxonomy of this recently described species is not fully resolved and may represent its own species complex. To examine the basis of sympatric differentiation between the two morphs, we combined analyses of micro- and macro-skeletal morphology with genome wide sequencing of the coral host, as well as ITS2 genotyping of the associated Symbiodinium communities. We found consistent differences between morphs on both the macro- and micro-skeletal scale. In addition, we identified 18 candidate functional genes that relate to skeletal formation and morphology that may explain how the two morphs regulate growth to achieve their distinct growth forms. With inconclusive results in endosymbiotic algal community diversity between the two morphs, we propose that colony morphology may be linked to bleaching susceptibility. We conclude that cryptic speciation may be in the early stages within the species P. acuta.


Assuntos
Antozoários/genética , Especiação Genética , Genoma , Filogenia , Animais , Antozoários/classificação , Recifes de Corais , DNA Intergênico/genética , Dinoflagellida/fisiologia , Genética Populacional , Oceano Pacífico , Simbiose/fisiologia , Sequenciamento Completo do Genoma
15.
PeerJ ; 5: e3732, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28894640

RESUMO

Here we describe an efficient and effective technique for rearing sexually-derived coral propagules from spawning through larval settlement and symbiont uptake with minimal impact on natural coral populations. We sought to maximize larval survival while minimizing expense and daily husbandry maintenance by experimentally determining optimized conditions and protocols for gamete fertilization, larval cultivation, induction of larval settlement by crustose coralline algae, and inoculation of newly settled juveniles with their dinoflagellate symbiont Symbiodinium. Larval rearing densities at or below 0.2 larvae mL-1 were found to maximize larval survival and settlement success in culture tanks while minimizing maintenance effort. Induction of larval settlement via the addition of a ground mixture of diverse crustose coralline algae (CCA) is recommended, given the challenging nature of in situ CCA identification and our finding that non settlement-inducing CCA assemblages do not inhibit larval settlement if suitable assemblages are present. Although order of magnitude differences in infectivity were found between common Great Barrier Reef Symbiodinium clades C and D, no significant differences in Symbiodinium uptake were observed between laboratory-cultured and wild-harvested symbionts in each case. The technique presented here for Acropora millepora can be adapted for research and restoration efforts in a wide range of broadcast spawning coral species.

16.
Nature ; 543(7645): 373-377, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28300113

RESUMO

During 2015-2016, record temperatures triggered a pan-tropical episode of coral bleaching, the third global-scale event since mass bleaching was first documented in the 1980s. Here we examine how and why the severity of recurrent major bleaching events has varied at multiple scales, using aerial and underwater surveys of Australian reefs combined with satellite-derived sea surface temperatures. The distinctive geographic footprints of recurrent bleaching on the Great Barrier Reef in 1998, 2002 and 2016 were determined by the spatial pattern of sea temperatures in each year. Water quality and fishing pressure had minimal effect on the unprecedented bleaching in 2016, suggesting that local protection of reefs affords little or no resistance to extreme heat. Similarly, past exposure to bleaching in 1998 and 2002 did not lessen the severity of bleaching in 2016. Consequently, immediate global action to curb future warming is essential to secure a future for coral reefs.


Assuntos
Antozoários/metabolismo , Recifes de Corais , Aquecimento Global/estatística & dados numéricos , Animais , Austrália , Clorofila/metabolismo , Clorofila A , Conservação dos Recursos Naturais/tendências , Aquecimento Global/prevenção & controle , Água do Mar/análise , Temperatura
17.
Glob Chang Biol ; 23(9): 3437-3448, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28247459

RESUMO

Many ecosystems around the world are rapidly deteriorating due to both local and global pressures, and perhaps none so precipitously as coral reefs. Management of coral reefs through maintenance (e.g., marine-protected areas, catchment management to improve water quality), restoration, as well as global and national governmental agreements to reduce greenhouse gas emissions (e.g., the 2015 Paris Agreement) is critical for the persistence of coral reefs. Despite these initiatives, the health and abundance of corals reefs are rapidly declining and other solutions will soon be required. We have recently discussed options for using assisted evolution (i.e., selective breeding, assisted gene flow, conditioning or epigenetic programming, and the manipulation of the coral microbiome) as a means to enhance environmental stress tolerance of corals and the success of coral reef restoration efforts. The 2014-2016 global coral bleaching event has sharpened the focus on such interventionist approaches. We highlight the necessity for consideration of alternative (e.g., hybrid) ecosystem states, discuss traits of resilient corals and coral reef ecosystems, and propose a decision tree for incorporating assisted evolution into restoration initiatives to enhance climate resilience of coral reefs.


Assuntos
Mudança Climática , Recifes de Corais , Ecossistema , Animais , Antozoários , Clima
18.
Appl Environ Microbiol ; 83(2)2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27815275

RESUMO

Coral tissue loss diseases, collectively known as white syndromes (WSs), induce significant mortality on reefs throughout the Indo-Pacific, yet definitive confirmation of WS etiologies remains elusive. In this study, we integrated ecological disease monitoring, bacterial community profiling, in situ visualization of microbe-host interactions, and cellular responses of the host coral through an 18-month repeated-sampling regime. We assert that the observed pathogenesis of WS lesions on acroporid corals at Lizard Island (Great Barrier Reef) is not the result of apoptosis or infection by Vibrio bacteria, ciliates, fungi, cyanobacteria, or helminths. Histological analyses detected helminths, ciliates, fungi, and cyanobacteria in fewer than 25% of WS samples, and helminths and fungi were also observed in 12% of visually healthy samples. The abundances of Vibrio-affiliated sequences (assessed using 16S rRNA amplicon sequencing) did not differ significantly between health states and never exceeded 3.3% of reads in any individual sample. In situ visualization detected Vibrio bacteria only in summer WS lesion samples and revealed no signs of these bacteria in winter disease samples (or any healthy tissue samples), despite continued disease progression year round. However, a 4-fold increase in Rhodobacteraceae-affiliated bacterial sequences at WS lesion fronts suggests that this group of bacteria could play a role in WS pathogenesis and/or serve as a diagnostic criterion for disease differentiation. While the causative agent(s) underlying WSs remains elusive, the microbial and cellular processes identified in this study will help to identify and differentiate visually similar but potentially distinct WS etiologies. IMPORTANCE: Over the past decade, a virulent group of coral diseases known as white syndromes have impacted coral reefs throughout the Indian and Pacific Oceans. This article provides a detailed case study of white syndromes to combine disease ecology, high-throughput microbial community profiling, and cellular-scale host-microbe visualization over seasonal time scales. We provide novel insights into the etiology of this devastating disease and reveal new diagnostic criteria that could be used to differentiate visually similar but etiologically distinct forms of white syndrome.


Assuntos
Antozoários/microbiologia , Bactérias/isolamento & purificação , Microbiota , Animais , Bactérias/genética , Recifes de Corais , Queensland , Estações do Ano
19.
Glob Chang Biol ; 22(12): 3888-3900, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27279327

RESUMO

Shelled pteropods play key roles in the global carbon cycle and food webs of various ecosystems. Their thin external shell is sensitive to small changes in pH, and shell dissolution has already been observed in areas where aragonite saturation state is ~1. A decline in pteropod abundance has the potential to disrupt trophic networks and directly impact commercial fisheries. Therefore, it is crucial to understand how pteropods will be affected by global environmental change, particularly ocean acidification. In this study, physiological and molecular approaches were used to investigate the response of the Mediterranean pteropod, Heliconoides inflatus, to pH values projected for 2100 under a moderate emissions trajectory (RCP6.0). Pteropods were subjected to pHT 7.9 for 3 days, and gene expression levels, calcification and respiration rates were measured relative to pHT 8.1 controls. Gross calcification decreased markedly under low pH conditions, while genes potentially involved in calcification were up-regulated, reflecting the inability of pteropods to maintain calcification rates. Gene expression data imply that under low pH conditions, both metabolic processes and protein synthesis may be compromised, while genes involved in acid-base regulation were up-regulated. A large number of genes related to nervous system structure and function were also up-regulated in the low pH treatment, including a GABAA receptor subunit. This observation is particularly interesting because GABAA receptor disturbances, leading to altered behavior, have been documented in several other marine animals after exposure to elevated CO2 . The up-regulation of many genes involved in nervous system function suggests that exposure to low pH could have major effects on pteropod behavior. This study illustrates the power of combining physiological and molecular approaches. It also reveals the importance of behavioral analyses in studies aimed at understanding the impacts of low pH on marine animals.


Assuntos
Calcificação Fisiológica , Gastrópodes/fisiologia , Concentração de Íons de Hidrogênio , Sistema Nervoso/metabolismo , Exoesqueleto , Animais , Ciclo do Carbono , Ecossistema , Cadeia Alimentar , Gastrópodes/metabolismo
20.
ISME J ; 9(10): 2261-74, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25885563

RESUMO

Despite being one of the simplest metazoans, corals harbor some of the most highly diverse and abundant microbial communities. Differentiating core, symbiotic bacteria from this diverse host-associated consortium is essential for characterizing the functional contributions of bacteria but has not been possible yet. Here we characterize the coral core microbiome and demonstrate clear phylogenetic and functional divisions between the micro-scale, niche habitats within the coral host. In doing so, we discover seven distinct bacterial phylotypes that are universal to the core microbiome of coral species, separated by thousands of kilometres of oceans. The two most abundant phylotypes are co-localized specifically with the corals' endosymbiotic algae and symbiont-containing host cells. These bacterial symbioses likely facilitate the success of the dinoflagellate endosymbiosis with corals in diverse environmental regimes.


Assuntos
Antozoários/microbiologia , Bactérias/isolamento & purificação , Microbiota , Animais , Bactérias/genética , DNA Bacteriano/análise , Dinoflagellida/genética , Microbiota/genética , Filogenia , Análise de Sequência de DNA , Simbiose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...