Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(10): e0292807, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37824570

RESUMO

The dynamic nature of movement and muscle activation emphasizes the importance of a sound experimental design. To ensure that an experiment determines what we intend, the design must be carefully evaluated. Before analyzing data, it is imperative to limit the number of outliers, biases, and skewness. In the present study, a simple center-out experiment was performed by 16 healthy volunteers. The experiment included three load conditions, two preparatory delays, two perturbations, and four targets placed along a diagonal path on a 2D plane. While the participants performed the tasks, the activity of seven arm muscles were monitored using surface electromyography (EMG). Principal component analysis (PCA) was used to evaluate the study design, identify muscle synergies, and assess the effects of individual quirks. With PCA, we can identify the trials that trigger stretch reflexes and pinpoint muscle synergies. The posterior deltoid, triceps long head, and brachioradialis were engaged when targets were in the direction of muscle shortening and the perturbation was applied in the opposite direction. Similarly, the pectoralis and anterior deltoid were engaged when the targets were in the direction of muscle shortening and the perturbation was applied in the opposite direction. The stretch reflexes were not triggered when the perturbation brought the hand in the direction of, or into the target, except if the muscle was pre-loaded. The use of PCA was also proven valuable when evaluating participant performance. While individual quirks are to be expected, failure to perform trials as expected can adversely affect the study results.


Assuntos
Músculo Esquelético , Reflexo de Estiramento , Humanos , Reflexo de Estiramento/fisiologia , Análise de Componente Principal , Músculo Esquelético/fisiologia , Eletromiografia/métodos , Mãos , Reflexo
2.
Eur J Neurosci ; 58(9): 3981-4001, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37727025

RESUMO

Most individuals experience their dominant arm as being more dexterous than the non-dominant arm, but the neural mechanisms underlying this asymmetry in motor behaviour are unclear. Using a delayed-reach task, we have recently demonstrated strong goal-directed tuning of stretch reflex gains in the dominant upper limb of human participants. Here, we used an equivalent experimental paradigm to address the neural mechanisms that underlie the preparation for reaching movements with the non-dominant upper limb. There were consistent effects of load, preparatory delay duration and target direction on the long latency stretch reflex. However, by comparing stretch reflex responses in the non-dominant arm with those previously documented in the dominant arm, we demonstrate that goal-directed tuning of short and long latency stretch reflexes is markedly weaker in the non-dominant limb. The results indicate that the motor performance asymmetries across the two upper limbs are partly due to the more sophisticated control of reflexive stiffness in the dominant limb, likely facilitated by the superior goal-directed control of muscle spindle receptors. Our findings therefore suggest that fusimotor control may play a role in determining performance of complex motor behaviours and support existing proposals that the dominant arm is better supplied than the non-dominant arm for executing more complex tasks, such as trajectory control.


Assuntos
Objetivos , Reflexo de Estiramento , Humanos , Reflexo de Estiramento/fisiologia , Movimento/fisiologia , Extremidade Superior , Músculo Esquelético/fisiologia , Eletromiografia , Reflexo/fisiologia
3.
eNeuro ; 10(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36781230

RESUMO

Voluntary movements are prepared before they are executed. Preparatory activity has been observed across the CNS and recently documented in first-order neurons of the human PNS (i.e., in muscle spindles). Changes seen in sensory organs suggest that independent modulation of stretch reflex gains may represent an important component of movement preparation. The aim of the current study was to further investigate the preparatory modulation of short-latency stretch reflex responses (SLRs) and long-latency stretch reflex responses (LLRs) of the dominant upper limb of human subjects. Specifically, we investigated how different target parameters (target distance and direction) affect the preparatory tuning of stretch reflex gains in the context of goal-directed reaching, and whether any such tuning depends on preparation duration and the direction of background loads. We found that target distance produced only small variations in reflex gains. In contrast, both SLR and LLR gains were strongly modulated as a function of target direction, in a manner that facilitated the upcoming voluntary movement. This goal-directed tuning of SLR and LLR gains was present or enhanced when the preparatory delay was sufficiently long (>250 ms) and the homonymous muscle was unloaded [i.e., when a background load was first applied in the direction of homonymous muscle action (assistive loading)]. The results extend further support for a relatively slow-evolving process in reach preparation that functions to modulate reflexive muscle stiffness, likely via the independent control of fusimotor neurons. Such control can augment voluntary goal-directed movement and is triggered or enhanced when the homonymous muscle is unloaded.


Assuntos
Objetivos , Reflexo de Estiramento , Humanos , Reflexo de Estiramento/fisiologia , Reflexo/fisiologia , Músculos/fisiologia , Movimento/fisiologia , Músculo Esquelético/fisiologia , Eletromiografia
4.
Metabolites ; 10(7)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32709053

RESUMO

Data integration has been proven to provide valuable information. The information extracted using data integration in the form of multiblock analysis can pinpoint both common and unique trends in the different blocks. When working with small multiblock datasets the number of possible integration methods is drastically reduced. To investigate the application of multiblock analysis in cases where one has a few number of samples and a lack of statistical power, we studied a small metabolomic multiblock dataset containing six blocks (i.e., tissue types), only including common metabolites. We used a single model multiblock analysis method called the joint and unique multiblock analysis (JUMBA) and compared it to a commonly used method, concatenated principal component analysis (PCA). These methods were used to detect trends in the dataset and identify underlying factors responsible for metabolic variations. Using JUMBA, we were able to interpret the extracted components and link them to relevant biological properties. JUMBA shows how the observations are related to one another, the stability of these relationships, and to what extent each of the blocks contribute to the components. These results indicate that multiblock methods can be useful even with a small number of samples.

5.
PLoS One ; 14(5): e0213661, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31086370

RESUMO

The zebrafish embryo is a popular model for drug screening, disease modelling and molecular genetics. In this study, samples were obtained from zebrafish at different developmental stages. The stages that were chosen were 3/4, 4/5, 24, 48, 72 and 96 hours post fertilization (hpf). Each sample included fifty embryos. The samples were analysed using gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). Principle component analysis (PCA) was applied to get an overview of the data and orthogonal projection to latent structure discriminant analysis (OPLS-DA) was utilised to discriminate between the developmental stages. In this way, changes in metabolite profiles during vertebrate development could be identified. Using a GC-TOF-MS metabolomics approach it was found that nucleotides and metabolic fuel (glucose) were elevated at early stages of embryogenesis, whereas at later stages amino acids and intermediates in the Krebs cycle were abundant. This agrees with zebrafish developmental biology, as organs such as the liver and pancreas develop at later stages. Thus, metabolomics of zebrafish embryos offers a unique opportunity to investigate large scale changes in metabolic processes during important developmental stages in vertebrate development. In terms of stability of the metabolic profile and viability of the embryos, it was concluded at 72 hpf was a suitable time point for the use of zebrafish as a model system in numerous scientific applications.


Assuntos
Desenvolvimento Embrionário , Metaboloma , Metabolômica , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Blástula , Cromatografia Gasosa-Espectrometria de Massas , Larva , Metabolômica/métodos , Análise de Componente Principal , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
6.
J Proteome Res ; 18(3): 1208-1217, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30742448

RESUMO

The aim of this study was to evaluate how the cytokine profiles differed between autoantibody based subgroups of systemic lupus erythematosus (SLE). SLE is a systemic autoimmune disease, characterized by periods of flares (active disease) and remission (inactive disease). The disease can affect many organ systems, e.g., skin, joints, kidneys, heart, and the central nervous system (CNS). SLE patients often have an overproduction of cytokines, e.g., interferons, chemokines, and interleukins. The high cytokine levels are part of the systemic inflammation, which can lead to tissue injury. In the present study, SLE patients were divided into five groups based on their autoantibody profiles. We thus defined these five groups: ANA negative, antiphospholipid (aPL) positive, anti-Sm/anti-RNP positive, Sjögren's syndrome (SS) antigen A and B positive, and patients positive for more than one type of autoantibodies (other SLE). Cytokines were measured using Mesoscale Discovery (MSD) multiplex analysis. On the basis of the cytokine data, ANA negative patients were the most deviating subgroup, with lower levels of interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-12/IL-23p40, and interferon gamma-induced protein (IP)-10. Despite low cytokine levels in the ANA negative group, autoantibody profiles did not discriminate between different cytokine patterns.


Assuntos
Autoanticorpos/sangue , Citocinas/sangue , Lúpus Eritematoso Sistêmico/sangue , Síndrome de Sjogren/sangue , Adulto , Anticorpos Anticardiolipina/sangue , Feminino , Humanos , Interferons/sangue , Interleucinas/sangue , Inibidor de Coagulação do Lúpus/sangue , Lúpus Eritematoso Sistêmico/classificação , Lúpus Eritematoso Sistêmico/patologia , Masculino , Pessoa de Meia-Idade , Proteínas de Ligação a RNA/sangue , Síndrome de Sjogren/classificação , Síndrome de Sjogren/patologia
7.
J Proteome Res ; 17(7): 2293-2306, 2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29873499

RESUMO

In the present study, we performed a metabolomics analysis to evaluate a MODY5/RCAD mouse mutant line as a potential model for HNF1B-associated diseases. Gas chromatography time-of-flight mass spectrometry (GC-TOF-MS) of gut, kidney, liver, muscle, pancreas, and plasma samples uncovered the tissue specific metabolite distribution. Orthogonal projections to latent structures discriminant analysis (OPLS-DA) was used to identify the differences between MODY5/RCAD and wild-type mice in each of the tissues. The differences included, for example, increased levels of amino acids in the kidneys and reduced levels of fatty acids in the muscles of the MODY5/RCAD mice. Interestingly, campesterol was found in higher concentrations in the MODY5/RCAD mice, with a four-fold and three-fold increase in kidneys and pancreas, respectively. As expected, the MODY5/RCAD mice displayed signs of impaired renal function in addition to disturbed liver lipid metabolism, with increased lipid and fatty acid accumulation in the liver. From a metabolomics perspective, the MODY5/RCAD model was proven to display a metabolic pattern similar to what would be suspected in HNF1B-associated diseases. These findings were in line with the presumed outcome of the mutation based on the different anatomy and function of the tissues as well as the effect of the mutation on development.


Assuntos
Modelos Animais de Doenças , Metabolômica/métodos , Camundongos Mutantes/metabolismo , Animais , Caderinas/genética , Cromatografia Gasosa-Espectrometria de Massas , Fator 1-beta Nuclear de Hepatócito/genética , Rim/metabolismo , Fígado/metabolismo , Camundongos , Pâncreas/metabolismo
8.
Metabolomics ; 13(10): 114, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28890672

RESUMO

INTRODUCTION: Availability of large cohorts of samples with related metadata provides scientists with extensive material for studies. At the same time, recent development of modern high-throughput 'omics' technologies, including metabolomics, has resulted in the potential for analysis of large sample sizes. Representative subset selection becomes critical for selection of samples from bigger cohorts and their division into analytical batches. This especially holds true when relative quantification of compound levels is used. OBJECTIVES: We present a multivariate strategy for representative sample selection and integration of results from multi-batch experiments in metabolomics. METHODS: Multivariate characterization was applied for design of experiment based sample selection and subsequent subdivision into four analytical batches which were analyzed on different days by metabolomics profiling using gas-chromatography time-of-flight mass spectrometry (GC-TOF-MS). For each batch OPLS-DA® was used and its p(corr) vectors were averaged to obtain combined metabolic profile. Jackknifed standard errors were used to calculate confidence intervals for each metabolite in the average p(corr) profile. RESULTS: A combined, representative metabolic profile describing differences between systemic lupus erythematosus (SLE) patients and controls was obtained and used for elucidation of metabolic pathways that could be disturbed in SLE. CONCLUSION: Design of experiment based representative sample selection ensured diversity and minimized bias that could be introduced at this step. Combined metabolic profile enabled unified analysis and interpretation.

9.
Metabolomics ; 13(6): 66, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28473743

RESUMO

INTRODUCTION: Post-collection handling, storage and transportation can affect the quality of blood samples. Pre-analytical biases can easily be introduced and can jeopardize accurate profiling of the plasma metabolome. Consequently, a mouse study must be carefully planned in order to avoid any kind of bias that can be introduced, in order not to compromise the outcome of the study. The storage and shipment of the samples should be made in such a way that the freeze-thaw cycles are kept to a minimum. In order to keep the latent effects on the stability of the blood metabolome to a minimum it is essential to study the effect that the post-collection and pre-analytical error have on the metabolome. OBJECTIVES: The aim of this study was to investigate the effects of thawing on the metabolic profiles of different sample types. METHODS: In the present study, a metabolomics approach was utilized to obtain a thawing profile of plasma samples obtained on three different days of experiment. The plasma samples were collected from the tail on day 1 and 3, while retro-orbital sampling was used on day 5. The samples were analysed using gas chromatography time-of-flight mass spectrometry (GC TOF-MS). RESULTS: The thawed plasma samples were found to be characterized by higher levels of amino acids, fatty acids, glycerol metabolites and purine and pyrimidine metabolites as a result of protein degradation, cell degradation and increased phospholipase activity. The consensus profile was thereafter compared to the previously published study comparing thawing profiles of tissue samples from gut, kidney, liver, muscle and pancreas. CONCLUSIONS: The comparison between thawed organ samples and thawed plasma samples indicate that the organ samples are more sensitive to thawing, however thawing still affected all investigated sample types.

10.
PLoS One ; 11(7): e0159384, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27441838

RESUMO

Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease which can affect most organ systems including skin, joints and the kidney. Clinically, SLE is a heterogeneous disease and shares features of several other rheumatic diseases, in particular primary Sjögrens syndrome (pSS) and systemic sclerosis (SSc), why it is difficult to diagnose The pathogenesis of SLE is not completely understood, partly due to the heterogeneity of the disease. This study demonstrates that metabolomics can be used as a tool for improved diagnosis of SLE compared to other similar autoimmune diseases. We observed differences in metabolic profiles with a classification specificity above 67% in the comparison of SLE with pSS, SSc and a matched group of healthy individuals. Selected metabolites were also significantly different between studied diseases. Biochemical pathway analysis was conducted to gain understanding of underlying pathways involved in the SLE pathogenesis. We found an increased oxidative activity in SLE, supported by increased xanthine oxidase activity and an increased turnover in the urea cycle. The most discriminatory metabolite observed was tryptophan, with decreased levels in SLE patients compared to control groups. Changes of tryptophan levels were related to changes in the activity of the aromatic amino acid decarboxylase (AADC) and/or to activation of the kynurenine pathway.


Assuntos
Lúpus Eritematoso Sistêmico/metabolismo , Metabolômica/métodos , Escleroderma Sistêmico/metabolismo , Síndrome de Sjogren/metabolismo , Adulto , Estudos de Casos e Controles , Demografia , Análise Discriminante , Feminino , Humanos , Análise dos Mínimos Quadrados , Masculino , Pessoa de Meia-Idade , Fenótipo , Análise de Componente Principal , Sensibilidade e Especificidade , Adulto Jovem
11.
PLoS One ; 10(6): e0129260, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26086868

RESUMO

Hierarchical modelling was applied in order to identify the organs that contribute to the levels of metabolites in plasma. Plasma and organ samples from gut, kidney, liver, muscle and pancreas were obtained from mice. The samples were analysed using gas chromatography time-of-flight mass spectrometry (GC TOF-MS) at the Swedish Metabolomics centre, Umeå University, Sweden. The multivariate analysis was performed by means of principal component analysis (PCA) and orthogonal projections to latent structures (OPLS). The main goal of this study was to investigate how each organ contributes to the metabolic plasma profile. This was performed using hierarchical modelling. Each organ was found to have a unique metabolic profile. The hierarchical modelling showed that the gut, kidney and liver demonstrated the greatest contribution to the metabolic pattern of plasma. For example, we found that metabolites were absorbed in the gut and transported to the plasma. The kidneys excrete branched chain amino acids (BCAAs) and fatty acids are transported in the plasma to the muscles and liver. Lactic acid was also found to be transported from the pancreas to plasma. The results indicated that hierarchical modelling can be utilized to identify the organ contribution of unknown metabolites to the metabolic profile of plasma.


Assuntos
Trato Gastrointestinal/metabolismo , Rim/metabolismo , Fígado/metabolismo , Metaboloma , Metabolômica/métodos , Modelos Teóricos , Músculo Esquelético/metabolismo , Pâncreas/metabolismo , Animais , Cromatografia Gasosa-Espectrometria de Massas/métodos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...