Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6843, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891157

RESUMO

Light-responsive polymers and especially amorphous azopolymers with intrinsic anisotropic and polarization-dependent deformation photo-response hold great promises for remotely controlled, tunable devices. However, dynamic control requires reversibility characteristics far beyond what is currently obtainable via plastic deformation of such polymers. Here, we embed azopolymer microparticles in a rubbery elastic matrix at high density. In the resulting composite, cumulative deformations are replaced by reversible shape switching - with two reversible degrees of freedom defined uniquely by the writing beam polarization. We quantify the locally induced strains, including small creeping losses, directly by means of a deformation tracking algorithm acting on microscope images of planar substrates. Further, we introduce free-standing 3D actuators able to smoothly undergo multiple configurational changes, including twisting, roll-in, grabbing-like actuation, and even continuous, pivot-less shape rotation, all dictated by a single wavelength laser beam with controlled polarization.

2.
Biomater Adv ; 147: 213327, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36841111

RESUMO

Additive manufactured (AM) Titanium-6Aluminum-4Vanadium (Ti64) scaffolds display unique mechanical and biological properties for implant devices. The elastic modulus can be tailored by adjusting the porosity, further facilitating bone ingrowth. Although Ti64 implants are biocompatible, the effects of AM surfaces without porous structures, and how the topography and surface chemistry of the respective surfaces affect the osteogenesis of bone marrow-derived mesenchymal stromal cells (BMSCs) has not yet been revealed. In this paper, we cultured BMSCs on solid electron beam melted Ti64 disks subjected to three surface treatments: chemical etching (HF), atomic-layer deposition of TiO2 (TiO2), and polished (POL), or left untreated (AB). The biocompatibility and osteogenic properties of these surfaces were investigated, and the results were compared to cells cultured in regular tissue-culture polystyrene culturing wells (TCPS). The surfaces were hydrophobic, except for the polished surface which was hydrophilic. All surface treatments are biocompatible and allow for osteogenic differentiation, as revealed by viability assays and gene expression analysis. Scanning electron microscopy shows that cells adhere differently depending on the surface properties, with more filopodia on the rougher surfaces, AB and TiO2 disks, and more lamellipodia on the smoother surfaces, HF and POL disks. All groups stimulated with beta glycerophosphate, ascorbic acid, and dexamethasone, have elevated expression of genes related to matrix formation, where the cells cultured on the disks treated with TiO2, HF and POL have the overall highest expression. The AB group appears to be less favorable in regards to matrix formation. Considering the matrix mineralization, the rougher surfaces, AB and TiO2, are able to induce matrix mineralization, with an elevated gene expression of vitamin D receptors and calcium deposition of unstimulated cells. Finally, imaging at day 21 revealed an even amount of cells and matrix, covering most of the partially melted particles. Our results suggests that surface topography is more important to osteogenesis than the wettability of the surface. Overall, the present study contributes to the understanding of using surface modifications to AM Ti64 implant materials and reveals how they affect bone growth.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Humanos , Elétrons , Titânio , Células-Tronco Mesenquimais/metabolismo
3.
Opt Express ; 30(14): 24362-24374, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-36236993

RESUMO

Line-focus solar concentrators have traditionally been limited by the 2D concentration limit due to the continuous translational symmetry in these systems. This limit is orders of magnitude lower than the 3D limit, severely limiting the achievable concentration ratio compared to point-focus systems. We propose a design principle for line-focus solar concentrators that bypasses this 2D limit, while maintaining a trough-like configuration and only requiring single-axis external solar tracking. This is achieved by combining the concept of étendue squeezing with the concept of tracking integration. To demonstrate the principle, we present a design example that achieves a simulated average yearly efficiency of 80% at a geometric concentration of 335x under light with a ±9mrad angular distribution and horizontal single-axis external tracking. We also show how the same design principle can achieve a line-focus with 1563x geometric concentration at 90% efficiency if design constraints are relaxed by foregoing tracking-integration and assuming two-axis external solar tracking. This design principle opens up the design space for high-concentration line-focus solar concentrators, and may contribute to a reconsideration of the trade-off between concentration and acceptance angle in such systems.

4.
Rev Sci Instrum ; 93(8): 085107, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050070

RESUMO

A detailed description of a flexible and portable atomic layer deposition (ALD) system is presented for conducting in situ Fourier transform infrared (FTIR) absorption spectroscopy studies during the evolution and growth of ALD films. The system is directly integrated with a commercial FTIR spectrometer (Bruker Vertex 80V) to avoid the necessity of an external optical path to the instrument, thereby mitigating complexity and optical losses. In this work, we use potassium bromide (KBr) with a 5 nm layer of sputtered Si as a substrate due to higher infrared transmittance when compared to a single-side polished Si wafer. The FTIR absorption study is conducted at normal incidence in transmission mode using a deuterated L-alanine doped triglycine sulfate (DTGS) detector owing to its potential applicability for reliable measurements at wavenumbers below ∼700 cm-1. We demonstrate this by measuring ex situ the transverse optical phonon of bulk Al2O3 centered at 680 cm-1. The integrity and functionality of the system to track the nucleation stage are validated by conducting in situ FTIR absorption measurements of Al2O3 using tri-methyl aluminum (TMA) and H2O. The measured IR absorption spectra for the Al2O3 growth after each cycle of TMA and H2O show the formation and removal of CH3 (2800-3000 cm-1) groups on the substrate surface and CH4 (3016 and 1306 cm-1) molecules in the reactor, thus confirming the successful tracking of ligand exchange. Thus, this instrument, together with the choice of KBr as substrate, can enable straightforward ALD nucleation studies using a DTGS detector having sufficient signal without additional optical setup and modifications to off-the-shelf FTIR systems that allow low wavenumber experiments.

5.
J Mater Sci Mater Med ; 32(9): 97, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34406475

RESUMO

Porous Titanium-6Aluminum-4Vanadium scaffolds made by electron beam-based additive manufacturing (AM) have emerged as state-of-the-art implant devices. However, there is still limited knowledge on how they influence the osteogenic differentiation of bone marrow-derived mesenchymal stromal cells (BMSCs). In this study, BMSCs are cultured on such porous scaffolds to determine how the scaffolds influence the osteogenic differentiation of the cells. The scaffolds are biocompatible, as revealed by the increasing cell viability. Cells are evenly distributed on the scaffolds after 3 days of culturing followed by an increase in bone matrix development after 21 days of culturing. qPCR analysis provides insight into the cells' osteogenic differentiation, where RUNX2 expression indicate the onset of differentiation towards osteoblasts. The COL1A1 expression suggests that the differentiated osteoblasts can produce the osteoid. Alkaline phosphatase staining indicates an onset of mineralization at day 7 in OM. The even deposits of calcium at day 21 further supports a successful bone mineralization. This work shines light on the interplay between AM Ti64 scaffolds and bone growth, which may ultimately lead to a new way of creating long lasting bone implants with fast recovery times.


Assuntos
Ligas/química , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Células Estromais/metabolismo , Alicerces Teciduais/química , Titânio/química , Fosfatase Alcalina/metabolismo , Materiais Biocompatíveis/química , Medula Óssea/metabolismo , Substitutos Ósseos , Osso e Ossos/metabolismo , Calcificação Fisiológica , Cálcio/metabolismo , Diferenciação Celular , Sobrevivência Celular , Cadeia alfa 1 do Colágeno Tipo I/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Elétrons , Humanos , Osteoblastos/metabolismo , Porosidade , Próteses e Implantes , Desenho de Prótese
6.
Adv Mater ; 33(30): e2007885, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34110653

RESUMO

The design and fabrication of lattice-strained platinum catalysts achieved by removing a soluble core from a platinum shell synthesized via atomic layer deposition, is reported. The remarkable catalytic performance for the oxygen reduction reaction (ORR), measured in both half-cell and full-cell configurations, is attributed to the observed lattice strain. By further optimizing the nanoparticle geometry and ionomer/carbon interactions, mass activity close to 0.8 A mgPt -1 @0.9 V iR-free is achievable in the membrane electrode assembly. Nevertheless, active catalysts with high ORR activity do not necessarily lead to high performance in the high-current-density (HCD) region. More attention shall be directed toward HCD performance for enabling high-power-density hydrogen fuel cells.

8.
Opt Lett ; 46(1): 42-45, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33362011

RESUMO

Line-focus solar concentrators are commonly designed by extruding a two-dimensional concentrator in the third dimension. For concentration in air, these concentrators are, by the nature of their design, limited by the two-dimensional solar concentration limit of 212×. This limit is orders of magnitude lower than the 45000× concentration limit for three-dimensional solar concentrators. Through the use of étendue squeezing, we conceptually show that it is possible to design line-focus solar concentrators beyond this 2D limit. This allows a concentrator to benefit from a line focus suitable for heat extraction through a tubular receiver, while reaching concentration ratios and acceptance angles previously unseen for line-focus concentrators. We show two design examples, achieving simulated 75× concentration and 218× concentration ratios, with a ±1∘ acceptance angle. For comparison, the 2D concentration limit is 57× at this acceptance angle. Étendue-squeezing line-focus solar concentrators, combined with recent developments in tracking integration, may enable the development of a new class of concentrated solar power systems.

10.
Nat Mater ; 19(11): 1195-1200, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32807925

RESUMO

Utilizing quantum effects in complex oxides, such as magnetism, multiferroicity and superconductivity, requires atomic-level control of the material's structure and composition. In contrast, the continuous conductivity changes that enable artificial oxide-based synapses and multiconfigurational devices are driven by redox reactions and domain reconfigurations, which entail long-range ionic migration and changes in stoichiometry or structure. Although both concepts hold great technological potential, combined applications seem difficult due to the mutually exclusive requirements. Here we demonstrate a route to overcome this limitation by controlling the conductivity in the functional oxide hexagonal Er(Mn,Ti)O3 by using conductive atomic force microscopy to generate electric-field induced anti-Frenkel defects, that is, charge-neutral interstitial-vacancy pairs. These defects are generated with nanoscale spatial precision to locally enhance the electronic hopping conductivity by orders of magnitude without disturbing the ferroelectric order. We explain the non-volatile effects using density functional theory and discuss its universality, suggesting an alternative dimension to functional oxides and the development of multifunctional devices for next-generation nanotechnology.

11.
Opt Express ; 28(14): 20503-20522, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32680108

RESUMO

Beam-steering lens arrays enable solar tracking using millimeter-scale relative translation between a set of lens arrays. This may represent a promising alternative to the mechanical bulk of conventional solar trackers, but until now a thorough exploration of possible configurations has not been carried out. We present an approach for designing beam-steering lens arrays based on multi-objective optimization, quantifying the trade-off between beam divergence and optical efficiency. Using this approach, we screen and optimize a large number of beam-steering lens array configurations, and identify new and promising configurations. We present a design capable of redirecting sunlight into a <2° divergence half-angle, with 73.4% average yearly efficiency, as well as a simplified design achieving 75.4% efficiency with a <3.5° divergence half-angle. These designs indicate the potential of beam-steering lens arrays for enabling low-cost solar tracking for stationary solar concentrators.

12.
J Mech Behav Biomed Mater ; 106: 103724, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32250950

RESUMO

Despite the great potential of Mg and its alloys as material for biodegradable implants, their low resistance to the simultaneous action of corrosion and mechanical stresses in the human body have hampered their use. Stress Corrosion Cracking has been reported as one of the most critical failure modes to overcome to allow such materials to be clinically applied. Thus, in this paper we investigate the effect of Equal Channel Angular Pressing (ECAP) on the Stress Corrosion Cracking (SCC) susceptibility of the AZ31 Mg alloy. To do so, AZ31 alloy has been subjected to 1, 2 and 4 passes of ECAP, and the samples so obtained have then been tested by means Slow Strain Rate Tests (SSRTs) in Simulated Body Fluid (SBF) at 37 °C. Samples subjected to one pass of ECAP are shown to be less susceptible to SCC compared to the material in the as-received condition, while further ECAP processing (2 and 4 passes) are found to worsen the SCC susceptibility. To understand the different SCC susceptibilities shown by the differently ECAPed samples, microstructural analyses, potentiodynamic polarization curves, hydrogen evolution experiments and Scanning Electron Microscopy (SEM) analyses of the fracture surfaces were carried out. The improved corrosion resistance of the samples subjected to 1 pass of ECAP compared to the samples in the as received condition (due to a finer grain size) and to the samples subjected to 2 and 4 passes (due to a more favourable texture evolution) represents the reason of their reduced SCC susceptibility.


Assuntos
Líquidos Corporais , Magnésio , Ligas , Corrosão , Humanos
13.
Materials (Basel) ; 11(10)2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30308932

RESUMO

In recent years, the need of surgical procedures has continuously increased and, therefore, researchers and clinicians are broadly focusing on the development of new biocompatible materials. Among them, polyetheretherketone (PEEK) has gained wide interest in load-bearing applications due to its yielding behaviour and its superior corrosion resistance. To assure its reliability in these applications where notches and other stress concentrators weaken implants resistance, a design tool for assessing its tensile and fatigue behaviour in the presence of geometrical discontinuities is highly claimed. Herein, a new fatigue design method based on a local approach is proposed for PEEK implant, and the results are compared with those obtained using the two main biomaterial design approaches available in literature, i.e., the theory of critical distances (TCD) and the notch stress intensity factor (NSIF) approach. To this aim, previously published datasets of PEEK-notched specimens are used, and the proposed method is reported to provide more accurate results and to be robust for different notch geometries.

14.
Materials (Basel) ; 11(5)2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29693565

RESUMO

Ti-6Al-4V has been extensively used in structural applications in various engineering fields, from naval to automotive and from aerospace to biomedical. Structural applications are characterized by geometrical discontinuities such as notches, which are widely known to harmfully affect their tensile strength. In recent years, many attempts have been done to define solid criteria with which to reliably predict the tensile strength of materials. Among these criteria, two local approaches are worth mentioning due to the accuracy of their predictions, i.e., the strain energy density (SED) approach and the theory of critical distance (TCD) method. In this manuscript, the robustness of these two methods in predicting the tensile behavior of notched Ti-6Al-4V specimens has been compared. To this aim, two very dissimilar notch geometries have been tested, i.e., semi-circular and blunt V-notch with a notch root radius equal to 1 mm, and the experimental results have been compared with those predicted by the two models. The experimental values have been estimated with low discrepancies by either the SED approach and the TCD method, but the former results in better predictions. The deviations for the SED are in fact lower than 1.3%, while the TCD provides predictions with errors almost up to 8.5%. Finally, the weaknesses and the strengths of the two models have been reported.

15.
Materials (Basel) ; 11(2)2018 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-29439510

RESUMO

The fatigue behavior and fracture mechanisms of additively manufactured Ti-6Al-4V specimens are investigated in this study. Three sets of testing samples were fabricated for the assessment of fatigue life. The first batch of samples was built by using Laser-Engineered Net Shaping (LENS) technology, a Direct Energy Deposition (DED) method. Internal voids and defects were induced in a second batch of samples by changing LENS machine processing parameters. Fatigue performance of these samples is compared to the wrought Ti-6Al-4V samples. The effects of machine-induced porosity are assessed on mechanical properties and results are presented in the form of SN curves for the three sets of samples. Fracture mechanisms are examined by using Scanning Electron Microscopy (SEM) to characterize the morphological characteristics of the failure surface. Different fracture surface morphologies are observed for porous and non-porous specimens due to the combination of head write speed and laser power. Formation of defects such as pores, unmelted regions, and gas entrapments affect the failure mechanisms in porous specimens. Non-porous specimens exhibit fatigue properties comparable with that of the wrought specimens, but porous specimens are found to show a tremendous reduced fatigue strength.

16.
Materials (Basel) ; 10(12)2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29236029

RESUMO

Polyetheretherketone (PEEK) has gained interest in many industrial applications due to its high strength-to-weight ratio, excellent heat tolerance and high corrosion resistance. Stress concentrators such as notches and geometrical discontinuities are present in many such components necessitating the reliable assessment of notch sensitivity of PEEK in monotonic tension. Here we evaluate the applicability of the strain energy density (SED) approach for the assessment of the fracture strength of experimentally tested notched geometries subject to corrosion. The fracture behavior of neat, circumferentially razor-grooved dog-bone specimens and circumferentially U-notched specimens with different notch radii can be predicted with a discrepancy lower than ±10%. Reliable predictions are shown on two previously published datasets employing both computed and published mechanical properties as inputs for the SED calculations. This report presents the first successful application of SED for PEEK as well as the successful prediction of tensile behavior in corrosive environments. This opens the road towards future applications of PEEK in fields its compliant use is of growing popularity.

17.
ACS Appl Mater Interfaces ; 9(45): 39105-39109, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29083141

RESUMO

Zn(O,S) buffer layer electronic configuration is determined by its composition and thickness, tunable through atomic layer deposition. The Zn K and L-edges in the X-ray absorption near edge structure verify ionicity and covalency changes with S content. A high intensity shoulder in the Zn K-edge indicates strong Zn 4s hybridized states and a preferred c-axis orientation. 2-3 nm thick films with low S content show a subdued shoulder showing less contribution from Zn 4s hybridization. A lower energy shift with film thickness suggests a decreasing bandgap. Further, ZnSO4 forms at substrate interfaces, which may be detrimental for device performance.

18.
ACS Appl Mater Interfaces ; 8(23): 14323-7, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27223620

RESUMO

The ability to precisely control interfaces of atomic layer deposited (ALD) zinc oxysulfide (Zn(O,S)) buffer layers to other layers allows precise tuning of solar cell performance. The O K- and S K-edge X-ray absorption near edge structure (XANES) of ∼2-4 nm thin Zn(O,S) films reveals the chemical and structural influences of their interface with ZnO, a common electrode material and diffusion barrier in solar cells. We observe that sulfate formation at oxide/sulfide interfaces is independent of film composition, a result of sulfur diffusion toward interfaces. Leveraging sulfur's diffusivity, we propose an alternative ALD process in which the zinc precursor pulse is bypassed during H2S exposure. Such a process yields similar results to the nanolaminate deposition method and highlights mechanistic differences between ALD sulfides and oxides. By identifying chemical species and structural evolution at sulfide/oxide interfaces, this work provides insights into increasing thin film solar cell efficiencies.

19.
J Phys Chem Lett ; 7(8): 1428-33, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27009677

RESUMO

Atomic layer deposition allows the fabrication of BaTiO3 (BTO) ultrathin films with tunable dielectric properties, which is a promising material for electronic and optical technology. Industrial applicability necessitates a better understanding of their atomic structure and corresponding properties. Through the use of element-specific X-ray absorption near edge structure (XANES) analysis, O K-edge of BTO as a function of cation composition and underlying substrate (RuO2 and SiO2) is revealed. By employing density functional theory and multiple scattering simulations, we analyze the distortions in BTO's bonding environment captured by the XANES spectra. The spectral weight shifts to lower energy with increasing Ti content and provides an atomic scale (microscopic) explanation for the increase in leakage current density. Differences in film morphologies in the first few layers near substrate-film interfaces reveal BTO's homogeneous growth on RuO2 and its distorted growth on SiO2. This work links structural changes to BTO thin-film properties and provides insight necessary for optimizing future BTO and other ternary metal oxide-based thin-film devices.

20.
Adv Healthc Mater ; 4(5): 739-47, 2015 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-25522214

RESUMO

A reproducible method is needed to fabricate 3D scaffold constructs that results in periodic and uniform structures with precise control at sub-micrometer and micrometer length scales. In this study, fabrication of scaffolds by two-photon polymerization (2PP) of a biodegradable urethane and acrylate-based photoelastomer is demonstrated. This material supports 2PP processing with sub-micrometer spatial resolution. The high photoreactivity of the biophotoelastomer permits 2PP processing at a scanning speed of 1000 mm s(-1), facilitating rapid fabrication of relatively large structures (>5 mm(3)). These structures are custom printed for in vitro assay screening in 96-well plates and are sufficiently flexible to enable facile handling and transplantation. These results indicate that stable scaffolds with porosities of greater than 60% can be produced using 2PP. Human bone marrow stromal cells grown on 3D scaffolds exhibit increased growth and proliferation compared to smooth 2D scaffold controls. 3D scaffolds adsorb larger amounts of protein than smooth 2D scaffolds due to their larger surface area; the scaffolds also allow cells to attach in multiple planes and to completely infiltrate the porous scaffolds. The flexible photoelastomer material is biocompatible in vitro and is associated with facile handling, making it a viable candidate for further study of complex 3D-printed scaffolds.


Assuntos
Células-Tronco Mesenquimais/citologia , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Fenômenos Biomecânicos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Elasticidade , Elastômeros/química , Elastômeros/farmacologia , Humanos , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...