Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 25(2): 813-831, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38233718

RESUMO

Autophagy is initiated by the assembly of multiple autophagy-related proteins that form the phagophore assembly site where autophagosomes are formed. Atg13 is essential early in this process, and a hub of extensive phosphorylation. How these multiple phosphorylations contribute to autophagy initiation, however, is not well understood. Here we comprehensively analyze the role of phosphorylation events on Atg13 during nutrient-rich conditions and nitrogen starvation. We identify and functionally characterize 48 in vivo phosphorylation sites on Atg13. By generating reciprocal mutants, which mimic the dephosphorylated active and phosphorylated inactive state of Atg13, we observe that disrupting the dynamic regulation of Atg13 leads to insufficient or excessive autophagy, which are both detrimental to cell survival. We furthermore demonstrate an involvement of Atg11 in bulk autophagy even during nitrogen starvation, where it contributes together with Atg1 to the multivalency that drives phase separation of the phagophore assembly site. These findings reveal the importance of post-translational regulation on Atg13 early during autophagy initiation, which provides additional layers of regulation to control bulk autophagy activity and integrate cellular signals.


Assuntos
Autofagia , Proteínas de Saccharomyces cerevisiae , Fosforilação , Autofagia/fisiologia , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Transdução de Sinais , Nitrogênio , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Adv Exp Med Biol ; 1420: 13-28, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37258781

RESUMO

Potency can be described as the quantitative measure of biological activity, that is, the ability of an Advanced Therapy Medicinal Product (ATMP) to elicit the intended effect necessary for clinical efficacy. Potency testing is part of the quality control strategy necessary for batch release and is required for market approval application of an ATMP. Thus, it is crucial to develop a reliable and accurate potency assay. As a prerequisite for potency assay development, it is essential to define the mode of action of the product and thereby also the relevant biological activity that should be measured. The establishment of a potency assay should be initiated already during early product development followed by its progressive implementation into an ATMP's manufacturing, quality control and release process. Potency testing is indispensable for clinical use with a wide range of applications. A potency assay is a valuable tool to determine the product's stability, detect the impact of changes in the manufacturing process on the product, demonstrate quality and manufacturing consistency from batch to batch, estimate clinical efficacy and define the effective dose. This chapter describes the requirements and challenges to be considered for potency assay development and the importance of a well-established potency assay for clinical use.


Assuntos
Controle de Qualidade , Resultado do Tratamento
3.
J Cell Sci ; 132(22)2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31649143

RESUMO

Autophagy is initiated by the formation of a phagophore assembly site (PAS), the precursor of autophagosomes. In mammals, autophagosome formation sites form throughout the cytosol in specialized subdomains of the endoplasmic reticulum (ER). In yeast, the PAS is also generated close to the ER, but always in the vicinity of the vacuole. How the PAS is anchored to the vacuole and the functional significance of this localization are unknown. Here, we investigated the role of the PAS-vacuole connection for bulk autophagy in the yeast Saccharomyces cerevisiae We show that Vac8 constitutes a vacuolar tether that stably anchors the PAS to the vacuole throughout autophagosome biogenesis via the PAS component Atg13. S. cerevisiae lacking Vac8 show inefficient autophagosome-vacuole fusion, and form fewer and smaller autophagosomes that often localize away from the vacuole. Thus, the stable PAS-vacuole connection established by Vac8 creates a confined space for autophagosome biogenesis between the ER and the vacuole, and allows spatial coordination of autophagosome formation and autophagosome-vacuole fusion. These findings reveal that the spatial regulation of autophagosome formation at the vacuole is required for efficient bulk autophagy.


Assuntos
Autofagossomos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Autofagia , Saccharomyces cerevisiae/citologia
4.
J Cell Biol ; 217(10): 3656-3669, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30097514

RESUMO

Autophagy mediates the bulk degradation of cytoplasmic material, particularly during starvation. Upon the induction of autophagy, autophagosomes form a sealed membrane around cargo, fuse with a lytic compartment, and release the cargo for degradation. The mechanism of autophagosome-vacuole fusion is poorly understood, although factors that mediate other cellular fusion events have been implicated. In this study, we developed an in vitro reconstitution assay that enables systematic discovery and dissection of the players involved in autophagosome-vacuole fusion. We found that this process requires the Atg14-Vps34 complex to generate PI3P and thus recruit the Ypt7 module to autophagosomes. The HOPS-tethering complex, recruited by Ypt7, is required to prepare SNARE proteins for fusion. Furthermore, we discovered that fusion requires the R-SNARE Ykt6 on the autophagosome, together with the Q-SNAREs Vam3, Vam7, and Vti1 on the vacuole. These findings shed new light on the mechanism of autophagosome-vacuole fusion and reveal that the R-SNARE Ykt6 is required for this process.


Assuntos
Autofagossomos/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Fusão de Membrana , Proteínas R-SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Classe III de Fosfatidilinositol 3-Quinases/genética , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas Qb-SNARE/genética , Proteínas Qb-SNARE/metabolismo , Proteínas R-SNARE/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteína 25 Associada a Sinaptossoma/genética , Proteína 25 Associada a Sinaptossoma/metabolismo , Vacúolos/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
5.
Cells ; 6(3)2017 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-28703742

RESUMO

Autophagy is an intracellular process responsible for the degradation and recycling of cytoplasmic components. It selectively removes harmful cellular material and enables the cell to survive starvation by mobilizing nutrients via the bulk degradation of cytoplasmic components. While research over the last decades has led to the discovery of the key factors involved in autophagy, the pathway is not yet completely understood. The first studies of autophagy on a molecular level were conducted in the yeast Saccharomyces cerevisiae. Building up on these studies, many homologs have been found in higher eukaryotes. Yeast remains a highly relevant model organism for studying autophagy, with a wide range of established methods to elucidate the molecular details of the autophagy pathway. In this review, we provide an overview of methods to study both selective and bulk autophagy, including intermediate steps in the yeast Saccharomyces cerevisiae. We compare different assays, discuss their advantages and limitations and list potential applications.

6.
J Biol Chem ; 291(52): 26636-26646, 2016 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-27815504

RESUMO

Calmodulin (CaM) is a Ca2+ binding protein modulating multiple targets, several of which are associated with cardiac pathophysiology. Recently, CaM mutations were linked to heart arrhythmia. CaM is crucial for cell growth and viability, yet the effect of the arrhythmogenic CaM mutations on cell viability, as well as heart rhythm, remains unknown, and only a few targets with relevance for heart physiology have been analyzed for their response to mutant CaM. We show that the arrhythmia-associated CaM mutants support growth and viability of DT40 cells in the absence of WT CaM except for the long QT syndrome mutant CaM D129G. Of the six CaM mutants tested (N53I, F89L, D95V, N97S, D129G, and F141L), three showed a decreased activation of Ca2+/CaM-dependent kinase II, most prominently the D129G CaM mutation, which was incapable of stimulating Thr286 autophosphorylation. Furthermore, the CaM D129G mutation led to bradycardia in zebrafish and an arrhythmic phenotype in a subset of the analyzed zebrafish.


Assuntos
Arritmias Cardíacas/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Calmodulina/genética , Proliferação de Células/genética , Mutação/genética , Taquicardia Ventricular/patologia , Animais , Cálcio/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Células Cultivadas , Humanos , Síndrome do QT Longo/etiologia , Síndrome do QT Longo/metabolismo , Síndrome do QT Longo/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosforilação , Conformação Proteica , Taquicardia Ventricular/etiologia , Taquicardia Ventricular/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
7.
Mol Cell ; 64(2): 221-235, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27768871

RESUMO

Autophagy is a potent cellular degradation pathway, and its activation needs to be tightly controlled. Cargo receptors mediate selectivity during autophagy by bringing cargo to the scaffold protein Atg11 and, in turn, to the autophagic machinery, including the central autophagy kinase Atg1. Here we show how selective autophagy is tightly regulated in space and time to prevent aberrant Atg1 kinase activation and autophagy induction. We established an induced bypass approach (iPass) that combines genetic deletion with chemically induced dimerization to evaluate the roles of Atg13 and cargo receptors in Atg1 kinase activation and selective autophagy progression. We show that Atg1 activation does not require cargo receptors, cargo-bound Atg11, or Atg13 per se. Rather, these proteins function in two independent pathways that converge to activate Atg1 at the vacuole. This pathway architecture underlies the spatiotemporal control of Atg1 kinase activity, thereby preventing inappropriate autophagosome formation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Relacionadas à Autofagia/genética , Autofagia/genética , Regulação Fúngica da Expressão Gênica , Proteínas Quinases/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aminopeptidases/genética , Aminopeptidases/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fagossomos/metabolismo , Proteínas Quinases/metabolismo , Multimerização Proteica , Transporte Proteico , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Vacúolos/metabolismo , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA