Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Antonie Van Leeuwenhoek ; 116(5): 393-413, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36719530

RESUMO

The impact of periplasmic localisation on the functioning of the XoxF protein was evaluated in the well-studied dichloromethane-utilising methylotroph Methylorubrum extorquens DM4, which harbors only one paralogue of the xoxF gene. It was found that the cytoplasmic targeting of XoxF by expression of the corresponding gene without the sequence encoding the N-terminal signal peptide does not impair the activation and lanthanide-dependent regulation of the MxaFI-methanol dehydrogenase genes. Analysis of the viability of ΔxoxF cells complemented with the full-length and truncated xoxF gene also showed that the expression of cytoplasmically targeted XoxF even increases the resistance to acids. These results contradict the proposed function of the XoxF protein as an extracytoplasmic signal sensor. At the same time, the observed dynamics of growth with methanol, as well as with dichloromethane of strains expressing cytoplasmic-targeted XoxF, indicate the probable enzymatic activity of lanthanide-dependent methanol dehydrogenase in this compartment. Herewith, the only available substrate for this enzyme in cells growing with dichloromethane was formaldehyde, which is produced during the primary metabolism of the mentioned halogenated toxicant directly in the cytosol. These findings suggest that the maturation of XoxF-methanol dehydrogenase may occur already in the cytoplasm, while the factors changing affinity of this enzyme for formaldehyde are apparently absent there. Together with the demonstrated functioning of an enhancer-like upstream activating sequence in the promoter region of the xoxF gene in M. extorquens DM4, the obtained information enriches our understanding of the regulation, synthesis and role of the XoxF protein.


Assuntos
Elementos da Série dos Lantanídeos , Methylobacterium extorquens , Citosol , Cloreto de Metileno/metabolismo , Methylobacterium extorquens/genética , Methylobacterium extorquens/metabolismo , Metanol/metabolismo , Proteínas de Bactérias/metabolismo , Elementos da Série dos Lantanídeos/metabolismo , Formaldeído/metabolismo , Oxirredutases do Álcool/metabolismo
2.
Antonie Van Leeuwenhoek ; 113(1): 101-116, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31463590

RESUMO

The genome of methylotrophic bacteria Methylorubrum extorquens DM4 contains two homologous groESL operons encoding the 60-kDa and 10-kDa subunits of GroE heat shock chaperones with highly similar amino acid sequences. To test a possible functional redundancy of corresponding GroEL proteins we attempted to disrupt the groEL1 and groEL2 genes. Despite the large number of recombinants analysed and the gentle culture conditions the groEL1-lacking mutant was not constructed suggesting that the loss of GroEL1 was lethal for cells. At the same time the ∆groEL2 strain was viable and varied from the wild-type by increased sensitivity to acid, salt and desiccation stresses as well as by the impaired growth with a toxic halogenated compound-dichloromethane (DCM). The evaluation of activity of putative PgroE1 and PgroE2 promoters using the reporter gene of green fluorescent protein (GFP) showed that the expression of groESL1 operon greatly prevails (about two orders of magnitude) over those of groESL2 under all tested conditions. However the above promoters demonstrated differential regulation in response to stresses. The expression from PgroE1 was heat-inducible, while the activity of PgroE2 was upregulated upon acid shock and cultivation with DCM. Based on these results we conclude that the highly conservative groESL1 operon (old locus tags METDI5839-5840) encodes the housekeeping chaperone essential for fundamental cellular processes. On the contrary the second pair of paralogues (METDI4129-4130) is dispensable, but corresponding GroE2 chaperone promotes the tolerance to acid and salt stresses, in particular, during the growth with DCM.


Assuntos
Proteínas de Bactérias/metabolismo , Methylobacteriaceae/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Methylobacteriaceae/genética , Regiões Promotoras Genéticas/genética
3.
J Environ Sci (China) ; 78: 147-160, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30665634

RESUMO

The fractionation of carbon and chlorine stable isotopes of dichloromethane (CH2Cl2, DCM) upon dechlorination by cells of the aerobic methylotroph Methylobacterium extorquens DM4 and by purified DCM dehalogenases of the glutathione S-transferase family was analyzed. Isotope effects for individual steps of the multi-stage DCM degradation process, including transfer across the cell wall from the aqueous medium to the cell cytoplasm, dehalogenase binding, and catalytic reaction, were considered. The observed carbon and chlorine isotope fractionation accompanying DCM consumption by cell supensions and enzymes was mainly determined by the breaking of CCl bonds, and not by inflow of DCM into cells. Chlorine isotope effects of DCM dehalogenation were initially masked in high density cultures, presumably due to inverse isotope effects of non-specific DCM oxidation under conditions of oxygen excess. Glutathione cofactor supply remarkably affected the correlation of variations of DCM carbon and chlorine stable isotopes (Δδ13C/Δδ37Cl), increasing corresponding ratio from 7.2-8.6 to 9.6-10.5 under conditions of glutathione deficiency. This suggests that enzymatic reaction of DCM with glutathione thiolate may involve stepwise breaking and making of bonds with the carbon atom of DCM, unlike the uncatalyzed reaction, which is a one-stage process, as shown by quantum-chemical modeling.


Assuntos
Bactérias/metabolismo , Biodegradação Ambiental , Cloreto de Metileno/metabolismo , Poluentes Químicos da Água/metabolismo , Isótopos de Carbono , Cloro , Glutationa Transferase/metabolismo
4.
J Basic Microbiol ; 51(3): 296-303, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21298685

RESUMO

Aerobic methylotrophic bacteria able to grow with dichloromethane (DCM) as the sole carbon and energy source possess a specific glutathione S-transferase, DCM dehalogenase, which transforms DCM to formaldehyde, used for biomass and energy production, and hydrochloric acid, which is excreted. Evidence is presented for chloride-specific responses for three DCM-degrading bacteria, Methylobacterium extorquens DM4, Methylopila helvetica DM6 and Albibacter methylovorans DM10. Chloride release into the medium was inhibited by sodium azide and m -chlorophenylhydrazone, suggesting an energy-dependent process. In contrast, only nigericin affected chloride excretion in Mb. extorquens DM4 and Mp. helvetica DM6, while valinomycin had the same effect in A. methylovorans DM10 only. Chloride ions stimulated DCM-dependent induction of DCM dehalogenase expression for Mp. helvetica DM6 and A. methylovorans DM10, and shortened the time for onset of chloride release into the medium. Striking chloride-containing structures were observed by electron microscopy and X-ray microanalysis on the cell surface of Mp. helvetica DM6 and A. methylovorans DM10 during growth with DCM, and with methanol in medium supplemented with sodium chloride. Taken together, these data suggest the existence of both general and specific chloride-associated adaptations in aerobic DCM-degrading bacteria.


Assuntos
Cloretos/metabolismo , Cloreto de Metileno/metabolismo , Methylobacterium extorquens/fisiologia , Methylocystaceae/fisiologia , Estresse Fisiológico , Aerobiose , Liases/metabolismo , Methylobacterium extorquens/efeitos dos fármacos , Methylobacterium extorquens/metabolismo , Methylocystaceae/efeitos dos fármacos , Methylocystaceae/metabolismo , Microscopia Eletrônica , Espectroscopia Fotoeletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA