Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Biochem Biophys Rep ; 10: 186-191, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28955746

RESUMO

The liver plays a central role in metabolism. Although many studies have described in vitro liver models for drug discovery, to date, no model has been described that can stably maintain liver function. Here, we used a unique, scaffold-free 3D bio-printing technology to construct a small portion of liver tissue that could stably maintain drug, glucose, and lipid metabolism, in addition to bile acid secretion. This bio-printed normal human liver tissue maintained expression of several kinds of hepatic drug transporters and metabolic enzymes that functioned for several weeks. The bio-printed liver tissue displayed glucose production via cAMP/protein kinase A signaling, which could be suppressed with insulin. Bile acid secretion was also observed from the printed liver tissue, and it accumulated in the culture medium over time. We observed both bile duct and sinusoid-like structures in the bio-printed liver tissue, which suggested that bile acid secretion occurred via a sinusoid-hepatocyte-bile duct route. These results demonstrated that our bio-printed liver tissue was unique, because it exerted diverse liver metabolic functions for several weeks. In future, we expect our bio-printed liver tissue to be applied to developing new models that can be used to improve preclinical predictions of long-term toxicity in humans, generate novel targets for metabolic liver disease, and evaluate biliary excretion in drug development.

2.
Tree Physiol ; 33(1): 106-18, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23303367

RESUMO

Stem diameter at breast height (DBH) and tree height (H) are commonly used measures of tree growth. We examined patterns of height growth and diameter growth along a stem using a 20-year record of an even-aged hinoki cypress (Chamaecyparis obtusa (Siebold & Zucc.) Endl.) stand. In the region of the stem below the crown (except for the butt swell), diameter growth rates (ΔD) at different heights tended to increase slightly from breast height upwards. This increasing trend was pronounced in suppressed trees, but not as much as the variation in ΔD among individual trees. Hence, ΔD below the crown can be regarded as generally being represented by the DBH growth rate (ΔDBH) of a tree. Accordingly, the growth rate of the stem cross-sectional area increased along the stem upwards in suppressed trees, but decreased in dominant trees. The stem diameter just below the crown base (D(CB)), the square of which is an index of the amount of leaves on a tree, was an important factor affecting ΔDBH. D(CB) also had a strong positive relationship with crown length. Hence, long-term changes in the D(CB) of a tree were associated with long-term changes in crown length, determined by the balance between the height growth rate (ΔH) and the rising rate of the crown base (ΔH(CB)). Within the crown, ΔD's were generally greater than the rates below the crown. Even dying trees (ΔD ≈ 0 below the crown) maintained ΔD > 0 within the crown and ΔH > 0 until about 5 years before death. This growth within the crown may be related to the need to produce new leaves to compensate for leaves lost owing to the longevity of the lower crown. These results explain the different time trajectories in DBH-H relationships among individual trees, and also the long-term changes in the DBH-H relationships. The view that a rise in the crown base is strongly related to leaf turnover helps to interpret DBH-H relationships.


Assuntos
Chamaecyparis/anatomia & histologia , Chamaecyparis/crescimento & desenvolvimento , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA